This work is licensed under the Creative Commons Attribution 4.0 International License.
Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food research international (Ottawa, Ont.), 161, 111858.Search in Google Scholar
Moens, K., Tavernier, I., & Dewettinck, K. (2018). Crystallization behavior of emulsified fats influences shear-induced partial coalescence. Food research international (Ottawa, Ont.), 113, 362–370.Search in Google Scholar
Li, Y., Zhang, C., Hu, B., Gao, Z., Wu, Y., Deng, Q., Nishinari, K., & Fang, Y. (2023). Formation and application of edible oleogels prepared by dispersing soy fiber particles in oil phase. Food research international (Ottawa, Ont.), 164, 112369.Search in Google Scholar
Rogers, M. A., & Marangoni, A. G. (2008). Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils. Crystal Growth and Design, 8(12), 4596-4601.Search in Google Scholar
Matheson, A. B., Koutsos, V., Dalkas, G., Euston, S., & Clegg, P. (2017). Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels. Langmuir : the ACS journal of surfaces and colloids, 33(18), 4537–4542.Search in Google Scholar
Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical reviews in food science and nutrition, 58(8), 1330–1341.Search in Google Scholar
Esposito, C. L., Tardif, V., Sarrazin, M., Kirilov, P., & Roullin, V. G. (2020). Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Materials science & engineering. C, Materials for biological applications, 114, 110999.Search in Google Scholar
Kerr, R. M., Tombokan, X., Ghosh, S., & Martini, S. (2011). Crystallization behavior of anhydrous milk fat-sunflower oil wax blends. Journal of agricultural and food chemistry, 59(6), 2689–2695.Search in Google Scholar
Ferro, A. C., Okuro, P. K., Badan, A. P., & Cunha, R. L. (2019). Role of the oil on glyceryl monostearate based oleogels. Food research international (Ottawa, Ont.), 120, 610–619.Search in Google Scholar
MORALES-RUEDA J A, DIBILDOX-ALVARADO E, CHAR-ALONSO M A, et al. Thermo-mechanical properties of candelillaSearch in Google Scholar
Chopin-Doroteo, M., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., de la Peña-Gil, A., & Toro-Vazquez, J. F. (2011). The effect of shearing in the thermo-mechanical properties of candelilla wax and candelilla wax–tripalmitin organogels. Food Biophysics, 6(3), 359-376.Search in Google Scholar
Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. Journal of the American Oil Chemists’ Society, 86, 1163-1173.Search in Google Scholar
Blake, A. I., Co, E. D., & Marangoni, A. G. (2014). Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of the American Oil Chemists’ Society, 91(6), 885-903.Search in Google Scholar
Shao, L., Bi, J., Li, X., & Dai, R. (2023). Effects of vegetable oil and ethylcellulose on the oleogel properties and its application in Harbin red sausage. International journal of biological macromolecules, 239, 124299.Search in Google Scholar
Berger, K. G., & Idris, N. A. (2005). Formulation of zero‐trans acid shortenings and margarines and other food fats with products of the oil palm. Journal of the American Oil Chemists’ Society, 82(11), 775-782.Search in Google Scholar
Hwang, H. S., Singh, M., Winkler-Moser, J. K., Bakota, E. L., & Liu, S. X. (2014). Preparation of margarines from organogels of sunflower wax and vegetable oils. Journal of food science, 79(10), C1926–C1932.Search in Google Scholar
Thakur, D., Singh, A., Suhag, R., Dhiman, A., & Chauhan, D. S. (2023). Oleogelation based on plant waxes: characterization and food applications. Journal of food science and technology, 60(12), 2927–2944. https://doi.org/10.1007/s13197-023-05786-0Search in Google Scholar
Miao, W., Jiang, H., Li, X., Sang, S., Jiang, L., Lin, Q., Zhang, Z., Chen, L., Long, J., Jiao, A., Wang, J., Jin, Z., & Qiu, C. (2023). Recent advances in natural gums as additives to help the construction and application of edible biopolymer gels: the example of hydrogels and oleogels. Critical reviews in food science and nutrition, 1–18. Advance online publication.Search in Google Scholar
Kim, D., & Oh, I. (2022). The Characteristic of Insect Oil for a Potential Component of Oleogel and Its Application as a Solid Fat Replacer in Cookies. Gels (Basel, Switzerland), 8(6), 355.Search in Google Scholar
Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 24(7), 151-154.Search in Google Scholar
Duffy, N., Blonk, H. C., Beindorff, C. M., Cazade, M., Bot, A., & Duchateau, G. S. (2009). Organogel-based emulsion systems, micro-structural features and impact on in vitro digestion. Journal of the American Oil Chemists’ Society, 86, 733-741.Search in Google Scholar
Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of food science, 78(9), C1334–C1339.Search in Google Scholar