Acceso abierto

Study on storage technology of corn wax based ice cream

  
03 sept 2024

Cite
Descargar portada

Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food research international (Ottawa, Ont.), 161, 111858. Search in Google Scholar

Moens, K., Tavernier, I., & Dewettinck, K. (2018). Crystallization behavior of emulsified fats influences shear-induced partial coalescence. Food research international (Ottawa, Ont.), 113, 362–370. Search in Google Scholar

Li, Y., Zhang, C., Hu, B., Gao, Z., Wu, Y., Deng, Q., Nishinari, K., & Fang, Y. (2023). Formation and application of edible oleogels prepared by dispersing soy fiber particles in oil phase. Food research international (Ottawa, Ont.), 164, 112369. Search in Google Scholar

Rogers, M. A., & Marangoni, A. G. (2008). Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils. Crystal Growth and Design, 8(12), 4596-4601. Search in Google Scholar

Matheson, A. B., Koutsos, V., Dalkas, G., Euston, S., & Clegg, P. (2017). Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels. Langmuir : the ACS journal of surfaces and colloids, 33(18), 4537–4542. Search in Google Scholar

Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical reviews in food science and nutrition, 58(8), 1330–1341. Search in Google Scholar

Esposito, C. L., Tardif, V., Sarrazin, M., Kirilov, P., & Roullin, V. G. (2020). Preparation and characterization of 12-HSA-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents. Materials science & engineering. C, Materials for biological applications, 114, 110999. Search in Google Scholar

Kerr, R. M., Tombokan, X., Ghosh, S., & Martini, S. (2011). Crystallization behavior of anhydrous milk fat-sunflower oil wax blends. Journal of agricultural and food chemistry, 59(6), 2689–2695. Search in Google Scholar

Ferro, A. C., Okuro, P. K., Badan, A. P., & Cunha, R. L. (2019). Role of the oil on glyceryl monostearate based oleogels. Food research international (Ottawa, Ont.), 120, 610–619. Search in Google Scholar

MORALES-RUEDA J A, DIBILDOX-ALVARADO E, CHAR-ALONSO M A, et al. Thermo-mechanical properties of candelilla Search in Google Scholar

Chopin-Doroteo, M., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M. A., de la Peña-Gil, A., & Toro-Vazquez, J. F. (2011). The effect of shearing in the thermo-mechanical properties of candelilla wax and candelilla wax–tripalmitin organogels. Food Biophysics, 6(3), 359-376. Search in Google Scholar

Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. Journal of the American Oil Chemists’ Society, 86, 1163-1173. Search in Google Scholar

Blake, A. I., Co, E. D., & Marangoni, A. G. (2014). Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of the American Oil Chemists’ Society, 91(6), 885-903. Search in Google Scholar

Shao, L., Bi, J., Li, X., & Dai, R. (2023). Effects of vegetable oil and ethylcellulose on the oleogel properties and its application in Harbin red sausage. International journal of biological macromolecules, 239, 124299. Search in Google Scholar

Berger, K. G., & Idris, N. A. (2005). Formulation of zero‐trans acid shortenings and margarines and other food fats with products of the oil palm. Journal of the American Oil Chemists’ Society, 82(11), 775-782. Search in Google Scholar

Hwang, H. S., Singh, M., Winkler-Moser, J. K., Bakota, E. L., & Liu, S. X. (2014). Preparation of margarines from organogels of sunflower wax and vegetable oils. Journal of food science, 79(10), C1926–C1932. Search in Google Scholar

Thakur, D., Singh, A., Suhag, R., Dhiman, A., & Chauhan, D. S. (2023). Oleogelation based on plant waxes: characterization and food applications. Journal of food science and technology, 60(12), 2927–2944. https://doi.org/10.1007/s13197-023-05786-0 Search in Google Scholar

Miao, W., Jiang, H., Li, X., Sang, S., Jiang, L., Lin, Q., Zhang, Z., Chen, L., Long, J., Jiao, A., Wang, J., Jin, Z., & Qiu, C. (2023). Recent advances in natural gums as additives to help the construction and application of edible biopolymer gels: the example of hydrogels and oleogels. Critical reviews in food science and nutrition, 1–18. Advance online publication. Search in Google Scholar

Kim, D., & Oh, I. (2022). The Characteristic of Insect Oil for a Potential Component of Oleogel and Its Application as a Solid Fat Replacer in Cookies. Gels (Basel, Switzerland), 8(6), 355. Search in Google Scholar

Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 24(7), 151-154. Search in Google Scholar

Duffy, N., Blonk, H. C., Beindorff, C. M., Cazade, M., Bot, A., & Duchateau, G. S. (2009). Organogel-based emulsion systems, micro-structural features and impact on in vitro digestion. Journal of the American Oil Chemists’ Society, 86, 733-741. Search in Google Scholar

Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of food science, 78(9), C1334–C1339. Search in Google Scholar