On the Method of Inverse Mapping for Solutions of Coupled Systems of Nonlinear Differential Equations Arising in Nanofluid Flow, Heat and Mass Transfer
et
03 oct. 2018
À propos de cet article
Publié en ligne: 03 oct. 2018
Pages: 1 - 14
Reçu: 12 nov. 2017
Accepté: 05 févr. 2018
DOI: https://doi.org/10.21042/AMNS.2018.1.00001
Mots clés
© 2018 Mangalagama Dewasurendra and Kuppalapalle Vajravelu, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Fig. 1

Fig. 2
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 2, Nb = 2,Pr = 1, Nt = 1, n = 0.5, A = 0.1314. The error function has minimum E(c0,δ,A) = 9.71 × 10–5 where c0 = –0.6195 and δ = 0.8462963.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143343Z&X-Amz-Expires=3600&X-Amz-Signature=3334f389833cad80b61efff61099d17bcf9aef2b260fadb7c208b80ca77351bc&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 3
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 3, Nb = 1,Pr = 5, Nt = 0, n = 1, A = 7.8902. The error function has minimum E(c0,δ,A) = 9.41 × 10–5 where c0 = –9.30195 and δ = 1.03944.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143343Z&X-Amz-Expires=3600&X-Amz-Signature=65f6a594835426c8b4b9cb87c7e7c72ce876e0f08cb9d5f602c54ec4474a7d4b&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 4
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 2, Nb = 2,Pr = 7, Nt = 0.5, n = 0.8, A = 0.24764. The error function has minimum E(c0,δ,A) = 8.28 × 10–5 where c0 = –0.690605 and δ = 0.8462963.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143343Z&X-Amz-Expires=3600&X-Amz-Signature=8657ce6bd924a07ccec5d4b5f98b15528b6a7251ab60dfd004d91b92f1515121&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Minimum of the squared residual error E(A,c0,δ) for three different sets of parameters_
2 | 2 | 1 | 1 | 0.5 | 0.1314 | –0.6195 | 0.673 | 9.71 × 10–5 |
3 | 1 | 5 | 0 | 1 | 7.8902 | –9.3020 | 1.0394 | 9.71 × 10–5 |
2 | 2 | 7 | 0.5 | 0.8 | 0.2476 | –0.6906 | 0.8463 | 8.28 × 10–5 |