On the Method of Inverse Mapping for Solutions of Coupled Systems of Nonlinear Differential Equations Arising in Nanofluid Flow, Heat and Mass Transfer
and
Oct 03, 2018
About this article
Published Online: Oct 03, 2018
Page range: 1 - 14
Received: Nov 12, 2017
Accepted: Feb 05, 2018
DOI: https://doi.org/10.21042/AMNS.2018.1.00001
Keywords
© 2018 Mangalagama Dewasurendra and Kuppalapalle Vajravelu, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Fig. 1

Fig. 2
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 2, Nb = 2,Pr = 1, Nt = 1, n = 0.5, A = 0.1314. The error function has minimum E(c0,δ,A) = 9.71 × 10–5 where c0 = –0.6195 and δ = 0.8462963.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T045024Z&X-Amz-Expires=3600&X-Amz-Signature=0c8c09143faccfb318f53b9d620c11b6a4cce565dc0030e98fc45f97a7e25672&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 3
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 3, Nb = 1,Pr = 5, Nt = 0, n = 1, A = 7.8902. The error function has minimum E(c0,δ,A) = 9.41 × 10–5 where c0 = –9.30195 and δ = 1.03944.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T045024Z&X-Amz-Expires=3600&X-Amz-Signature=c0825f4c6193ceba9bbbf674a0e13f44fd138c87fadf69e99b5b80aa2de43d85&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 4
![Plot of E(c0,δ), the squared residual error over η ∈ [0,499] as a function of c0 and δ using parameter values Le = 2, Nb = 2,Pr = 7, Nt = 0.5, n = 0.8, A = 0.24764. The error function has minimum E(c0,δ,A) = 8.28 × 10–5 where c0 = –0.690605 and δ = 0.8462963.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e8671e4585e08aa184a/j_AMNS.2018.1.00001_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T045024Z&X-Amz-Expires=3600&X-Amz-Signature=f1b8fb0ca41b3f5e3f5fe3e2a180c0edb113a0e881d7966aeb2146b60d194a41&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Minimum of the squared residual error E(A,c0,δ) for three different sets of parameters_
2 | 2 | 1 | 1 | 0.5 | 0.1314 | –0.6195 | 0.673 | 9.71 × 10–5 |
3 | 1 | 5 | 0 | 1 | 7.8902 | –9.3020 | 1.0394 | 9.71 × 10–5 |
2 | 2 | 7 | 0.5 | 0.8 | 0.2476 | –0.6906 | 0.8463 | 8.28 × 10–5 |