This work is licensed under the Creative Commons Attribution 4.0 International License.
Lin, L., Yang, Y., Cheng, H., & Chen, X. (2019). Autonomous vision-based aerial grasping for rotorcraft unmanned aerial vehicles. Sensors, 19(15), 3410.LinL.YangY.ChengH.ChenX. (2019). Autonomous vision-based aerial grasping for rotorcraft unmanned aerial vehicles. Sensors, 19(15), 3410.Search in Google Scholar
Chen, H., Quan, F., Fang, L., & Zhang, S. (2019). Aerial grasping with a lightweight manipulator based on multi-objective optimization and visual compensation. Sensors, 19(19), 4253.ChenH.QuanF.FangL.ZhangS. (2019). Aerial grasping with a lightweight manipulator based on multi-objective optimization and visual compensation. Sensors, 19(19), 4253.Search in Google Scholar
Fang, L., Chen, H., Lou, Y., Li, Y., & Liu, Y. (2018, May). Visual grasping for a lightweight aerial manipulator based on NSGA-II and kinematic compensation. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3488-3493). IEEE.FangL.ChenH.LouY.LiY.LiuY. (2018, May). Visual grasping for a lightweight aerial manipulator based on NSGA-II and kinematic compensation. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3488-3493). IEEE.Search in Google Scholar
Santamaria-Navarro, A., Grosch, P., Lippiello, V., Solà, J., & Andrade-Cetto, J. (2017). Uncalibrated visual servo for unmanned aerial manipulation. IEEE/ASME Transactions on Mechatronics, 22(4), 1610-1621.Santamaria-NavarroA.GroschP.LippielloV.SolàJ.Andrade-CettoJ. (2017). Uncalibrated visual servo for unmanned aerial manipulation. IEEE/ASME Transactions on Mechatronics, 22(4), 1610-1621.Search in Google Scholar
Seo, H., Kim, S., & Kim, H. J. (2017, May). Aerial grasping of cylindrical object using visual servoing based on stochastic model predictive control. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 6362-6368). IEEE.SeoH.KimS.KimH. J. (2017, May). Aerial grasping of cylindrical object using visual servoing based on stochastic model predictive control. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 6362-6368). IEEE.Search in Google Scholar
Chen, Y., Wu, Y., Zhang, Z., Miao, Z., Zhong, H., Zhang, H., & Wang, Y. (2022). Image-based visual servoing of unmanned aerial manipulators for tracking and grasping a moving target. IEEE Transactions on Industrial Informatics, 19(8), 8889-8899.ChenY.WuY.ZhangZ.MiaoZ.ZhongH.ZhangH.WangY. (2022). Image-based visual servoing of unmanned aerial manipulators for tracking and grasping a moving target. IEEE Transactions on Industrial Informatics, 19(8), 8889-8899.Search in Google Scholar
Lai, N., Chen, Y., Liang, J., He, B., Zhong, H., Zhang, H., & Wang, Y. (2022). Image dynamics-based visual servo control for unmanned aerial manipulatorl with a virtual camera. IEEE/ASME Transactions on Mechatronics, 27(6), 5264-5274.LaiN.ChenY.LiangJ.HeB.ZhongH.ZhangH.WangY. (2022). Image dynamics-based visual servo control for unmanned aerial manipulatorl with a virtual camera. IEEE/ASME Transactions on Mechatronics, 27(6), 5264-5274.Search in Google Scholar
Zhong, H., Miao, Z., Wang, Y., Mao, J., Li, L., Zhang, H., …& Fierro, R. (2019). A practical visual servo control for aerial manipulation using a spherical projection model. IEEE Transactions on Industrial Electronics, 67(12), 10564-10574.ZhongH.MiaoZ.WangY.MaoJ.LiL.ZhangH.FierroR. (2019). A practical visual servo control for aerial manipulation using a spherical projection model. IEEE Transactions on Industrial Electronics, 67(12), 10564-10574.Search in Google Scholar
Zhang, G., He, Y., Dai, B., Gu, F., Yang, L., Han, J., …& Qi, J. (2018, May). Grasp a moving target from the air: System & control of an aerial manipulator. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1681-1687). IEEE.ZhangG.HeY.DaiB.GuF.YangL.HanJ.QiJ. (2018, May). Grasp a moving target from the air: System & control of an aerial manipulator. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1681-1687). IEEE.Search in Google Scholar
Luo, B., Chen, H., Quan, F., Zhang, S., & Liu, Y. (2020). Natural feature-based visual servoing for grasping target with an aerial manipulator. Journal of Bionic Engineering, 17, 215-228.LuoB.ChenH.QuanF.ZhangS.LiuY. (2020). Natural feature-based visual servoing for grasping target with an aerial manipulator. Journal of Bionic Engineering, 17, 215-228.Search in Google Scholar
Becerra-Mora, Y. A., & Soto-Gaona, S. (2023). Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey. Revista UIS Ingenierías, 22(4), 115-128.Becerra-MoraY. A.Soto-GaonaS. (2023). Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey. Revista UIS Ingenierías, 22(4), 115-128.Search in Google Scholar
Ramon-Soria, P., Arrue, B. C., & Ollero, A. (2020). Grasp planning and visual servoing for an outdoors aerial dual manipulator. Engineering, 6(1), 77-88.Ramon-SoriaP.ArrueB. C.OlleroA. (2020). Grasp planning and visual servoing for an outdoors aerial dual manipulator. Engineering, 6(1), 77-88.Search in Google Scholar
Morita, M., Kinjo, H., Sato, S., Sulyyon, T., & Anezaki, T. (2017, November). Autonomous flight drone for infrastructure (transmission line) inspection (3). In 2017 international conference on intelligent informatics and biomedical sciences (ICIIBMS) (pp. 198-201). IEEE.MoritaM.KinjoH.SatoS.SulyyonT.AnezakiT. (2017, November). Autonomous flight drone for infrastructure (transmission line) inspection (3). In 2017 international conference on intelligent informatics and biomedical sciences (ICIIBMS) (pp. 198-201). IEEE.Search in Google Scholar
Day, D. (2017). Drones for transmission infrastructure inspection and mapping improve efficiency. Natural Gas & Electricity, 33(12), 7-11.DayD. (2017). Drones for transmission infrastructure inspection and mapping improve efficiency. Natural Gas & Electricity, 33(12), 7-11.Search in Google Scholar
Wang, W., Shen, Z., & Zhou, Z. (2024). A Novel Vision-and Radar-Based Line Tracking Assistance System for Drone Transmission Line Inspection. Remote Sensing, 16(2), 355.WangW.ShenZ.ZhouZ. (2024). A Novel Vision-and Radar-Based Line Tracking Assistance System for Drone Transmission Line Inspection. Remote Sensing, 16(2), 355.Search in Google Scholar
Du, Q., Dong, W., Su, W., & Wang, Q. (2022, September). UAV inspection technology and application of transmission line. In 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 594-597). IEEE.DuQ.DongW.SuW.WangQ. (2022, September). UAV inspection technology and application of transmission line. In 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE) (pp. 594-597). IEEE.Search in Google Scholar
Siddiqui, Z. A., & Park, U. (2020). A drone based transmission line components inspection system with deep learning technique. Energies, 13(13), 3348.SiddiquiZ. A.ParkU. (2020). A drone based transmission line components inspection system with deep learning technique. Energies, 13(13), 3348.Search in Google Scholar
Iversen, N., Schofield, O. B., Cousin, L., Ayoub, N., Vom Bögel, G., & Ebeid, E. (2021, September). Design, integration and implementation of an intelligent and self-recharging drone system for autonomous power line inspection. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4168-4175). IEEE.IversenN.SchofieldO. B.CousinL.AyoubN.Vom BögelG.EbeidE. (2021, September). Design, integration and implementation of an intelligent and self-recharging drone system for autonomous power line inspection. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4168-4175). IEEE.Search in Google Scholar
Wang, Z., Gao, Q., Xu, J., & Li, D. (2022). A review of UAV power line inspection. In Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October 23–25, 2020 (pp. 3147-3159). Springer Singapore.WangZ.GaoQ.XuJ.LiD. (2022). A review of UAV power line inspection. In Advances in Guidance, Navigation and Control: Proceedings of 2020 International Conference on Guidance, Navigation and Control, ICGNC 2020, Tianjin, China, October23–25, 2020 (pp. 3147-3159). Springer Singapore.Search in Google Scholar
Li, Z., Zhang, Y., Wu, H., Suzuki, S., Namiki, A., & Wang, W. (2023). Design and application of a UAV autonomous inspection system for high-voltage power transmission lines. Remote Sensing, 15(3), 865.LiZ.ZhangY.WuH.SuzukiS.NamikiA.WangW. (2023). Design and application of a UAV autonomous inspection system for high-voltage power transmission lines. Remote Sensing, 15(3), 865.Search in Google Scholar
Yu, C., Qu, B., Zhu, Y., Ji, Y., Zhao, H., & Xing, Z. (2020, December). Design of the transmission line inspection system based on UAV. In 2020 10th International Conference on Power and Energy Systems (ICPES) (pp. 543-548). IEEE.YuC.QuB.ZhuY.JiY.ZhaoH.XingZ. (2020, December). Design of the transmission line inspection system based on UAV. In 2020 10th International Conference on Power and Energy Systems (ICPES) (pp. 543-548). IEEE.Search in Google Scholar
Mao, T., Ren, L., Yuan, F., Li, C., Zhang, L., Zhang, M., & Chen, Y. (2019, May). Defect recognition method based on HOG and SVM for drone inspection images of power transmission line. In 2019 international conference on high performance big data and intelligent systems (HPBD&IS) (pp. 254-257). IEEE.MaoT.RenL.YuanF.LiC.ZhangL.ZhangM.ChenY. (2019, May). Defect recognition method based on HOG and SVM for drone inspection images of power transmission line. In 2019 international conference on high performance big data and intelligent systems (HPBD&IS) (pp. 254-257). IEEE.Search in Google Scholar
Ma Jun,Cheng Zilong,Zhang Xiaoxue,Lin Ziyu,Lewis Frank L & Lee Tong Heng. (2023). Local Learning Enabled Iterative Linear Quadratic Regulator for Constrained Trajectory Planning‥ IEEE transactions on neural networks and learning systems(9),5354-5365.MaJunChengZilongZhangXiaoxueLinZiyuLewisFrank LLee TongHeng (2023). Local Learning Enabled Iterative Linear Quadratic Regulator for Constrained Trajectory Planning‥ IEEE transactions on neural networks and learning systems(9),5354-5365.Search in Google Scholar
Becker Marvin,Lilge Torsten,Mueller Matthias A. & Haddadin Sami. (2021). Circular Fields and Predictive Multi-Agents for Online Global Trajectory Planning. IEEE ROBOTICS AND AUTOMATION LETTERS(2),2618-2625.BeckerMarvinLilgeTorstenMuellerMatthias A.HaddadinSami (2021). Circular Fields and Predictive Multi-Agents for Online Global Trajectory Planning. IEEE ROBOTICS AND AUTOMATION LETTERS(2),2618-2625.Search in Google Scholar
Shuen Zhao,Yao Leng,Maojie Zhao,Kan Wang,Jie Zeng & Wanli Liu. (2024). Erratum: A Novel Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Improved APF and RRT Algorithm. International Journal of Automotive Technology(prepublish),1-1.ShuenZhaoYaoLengMaojieZhaoKanWangJieZengWanliLiu (2024). Erratum: A Novel Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Improved APF and RRT Algorithm. International Journal of Automotive Technology(prepublish),1-1.Search in Google Scholar