Open Access

Research on the unification of dominant and subjectivity of ideological and political education in colleges and universities based on big data technology

  
Sep 26, 2025

Cite
Download Cover

Figure 1.

Array simulation changes
Array simulation changes

Figure 2.

Income analysis of tutors conscientiously cultivating students
Income analysis of tutors conscientiously cultivating students

Figure 3.

Cost analysis of tutors conscientiously cultivating students
Cost analysis of tutors conscientiously cultivating students

Figure 4.

Additional income analysis of tutors conscientiously cultivating students
Additional income analysis of tutors conscientiously cultivating students

Payment matrix when the school “ineffective incentives”

Tutor
Carefully cultivate (y) Careless cultivation (1-y)
Student Active learning (x) As + rLCsAt + (1 − r)LCtAu + Lu + Eu AsCsAt + EtAu
Passive learning (1 − x) 0AtCtAu 0AtAu

Payment matrix when the school “effective incentives”

Tutor
Carefully cultivate (y) Careless cultivation (1-y)
Student Active learning(x) As + rL − (CsBq)At + (1 − r)L − [CtB(1 − q)]Au + Lu + BuCu As − (CsBq)At + EtAu + BuCu
Passive learning (1 − x) 0At − [CtB(1 − q)]Au + BuCu 0AtAu + BuCu

Local stability of equilibrium points (Cases 1, 2)

Case 1 Case 1 Case 1 Case 2 Case 2 Case 2
Equalization point det J trJ Stability det J trJ Stability
E1(0, 0, 0) - + Unstable point - + Unstable point
E2(0, 0, 1) - - Unstable point + + Unstable point
E3(0, 1, 0) + + Unstable point + + Unstable point
E4(0, 1, 1) + + Unstable point - - Unstable point
E5(1, 0, 0) + - ESS + - ESS
E6(1, 0, 1) - - ESS - - ESS
E7(1, 1, 0) - - ESS - - ESS
E8(1, 1, 1) + + ESS + + ESS

Three-party game model

Education subject 1 Act 1 Act 2
Education subject 2 Act 1 Act 2 Act 1 Act 2
Education subject 3 Act 1 Revenue value Revenue value Revenue value Revenue value
Act 2 Revenue value Revenue value Revenue value Revenue value

The eigenvalue of the equilibrium point

Equalization point Eigenvalue λ1 Eigenvalue λ2 Eigenvalue λ3
E1(0, 0, 0) AsCs Ct BuCu
E2(0, 0, 1) As + BqCs B(1 − q) − Ct −(BuCu)
E3(0, 1, 0) As + rLCs Ct BuCu
E4(0, 1, 1) As + rL + BqCs −[B(1 − q) − Ct] −(BuCu)
E5(1, 0, 0) −(AsCs) L(1 − r) − CtEt BuCu
E6(1, 0, 1) −(As + BqCs) L(1 − r) + B(1 − q) − CtEt −(BuCu)
E7(1, 1, 0) −(As + rLCs) −[L(1 − r) − CtEt] BuCuEu
E8(1, 1, 1) −(As + rL + BqCs) [L(1r)+B(1q)CtEt]$$ - \left[ {L(1 - r) + B(1 - q) - {C_t} - {E_t}} \right]$$ −(BuCuEu)
Language:
English