This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Kumar, D., Alam, M., Zou, P. X., Sanjayan, J. G., & Memon, R. A. (2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 131, 110038.KumarD.AlamM.ZouP. X.SanjayanJ. G.MemonR. A. (2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 131, 110038.Search in Google Scholar
Ashby, M. F., & Jones, D. R. (2012). Engineering materials 1: an introduction to properties, applications and design (Vol. 1). Elsevier.AshbyM. F.JonesD. R. (2012). Engineering materials 1: an introduction to properties, applications and design (Vol. 1). Elsevier.Search in Google Scholar
Lewandowski, J. J., & Seifi, M. (2016). Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 46(1), 151-186.LewandowskiJ. J.SeifiM. (2016). Metal additive manufacturing: a review of mechanical properties. Annual review of materials research, 46(1), 151-186.Search in Google Scholar
Qin, J., Chen, Q., Yang, C., & Huang, Y. (2016). Research process on property and application of metal porous materials. Journal of Alloys and Compounds, 654, 39-44.QinJ.ChenQ.YangC.HuangY. (2016). Research process on property and application of metal porous materials. Journal of Alloys and Compounds, 654, 39-44.Search in Google Scholar
García, T. E., Rodríguez, C., Belzunce, F. J., & Suárez, C. (2014). Estimation of the mechanical properties of metallic materials by means of the small punch test. Journal of alloys and compounds, 582, 708-717.GarcíaT. E.RodríguezC.BelzunceF. J.SuárezC. (2014). Estimation of the mechanical properties of metallic materials by means of the small punch test. Journal of alloys and compounds, 582, 708-717.Search in Google Scholar
Merayo, D., Rodríguez-Prieto, A., & Camacho, A. M. (2020). Prediction of physical and mechanical properties for metallic materials selection using big data and artificial neural networks. IEEE access, 8, 13444-13456.MerayoD.Rodríguez-PrietoA.CamachoA. M. (2020). Prediction of physical and mechanical properties for metallic materials selection using big data and artificial neural networks. IEEE access, 8, 13444-13456.Search in Google Scholar
Cui, Y., Li, B., He, H., Zhou, W., Chen, B., & Qian, G. (2016). Metal–organic frameworks as platforms for functional materials. Accounts of chemical research, 49(3), 483-493.CuiY.LiB.HeH.ZhouW.ChenB.QianG. (2016). Metal–organic frameworks as platforms for functional materials. Accounts of chemical research, 49(3), 483-493.Search in Google Scholar
Rosen, A. S., Iyer, S. M., Ray, D., Yao, Z., Aspuru-Guzik, A., Gagliardi, L., … & Snurr, R. Q. (2021). Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter, 4(5), 1578-1597.RosenA. S.IyerS. M.RayD.YaoZ.Aspuru-GuzikA.GagliardiL.SnurrR. Q. (2021). Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter, 4(5), 1578-1597.Search in Google Scholar
Pang, J. C., Li, S. X., Wang, Z. G., & Zhang, Z. F. (2014). Relations between fatigue strength and other mechanical properties of metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 37(9), 958-976.PangJ. C.LiS. X.WangZ. G.ZhangZ. F. (2014). Relations between fatigue strength and other mechanical properties of metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 37(9), 958-976.Search in Google Scholar
Huang, K., Marthinsen, K., Zhao, Q., & Logé, R. E. (2018). The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Progress in Materials Science, 92, 284-359.HuangK.MarthinsenK.ZhaoQ.LogéR. E. (2018). The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Progress in Materials Science, 92, 284-359.Search in Google Scholar
Sun, L. G., Wu, G., Wang, Q., & Lu, J. (2020). Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 38, 114-135.SunL. G.WuG.WangQ.LuJ. (2020). Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 38, 114-135.Search in Google Scholar
Rana, S., & Fangueiro, R. (Eds.). (2016). Advanced composite materials for aerospace engineering: processing, properties and applications. Woodhead Publishing.RanaS.FangueiroR. (Eds.). (2016). Advanced composite materials for aerospace engineering: processing, properties and applications. Woodhead Publishing.Search in Google Scholar
Ashby, M. F., Shercliff, H., & Cebon, D. (2018). Materials: engineering, science, processing and design. Butterworth-Heinemann.AshbyM. F.ShercliffH.CebonD. (2018). Materials: engineering, science, processing and design. Butterworth-Heinemann.Search in Google Scholar
Hashmi, M. S. J. (2014). Comprehensive materials processing. Newnes.HashmiM. S. J. (2014). Comprehensive materials processing. Newnes.Search in Google Scholar
Balasubramanian, M. (2014). Composite materials and processing (Vol. 711). Boca Raton: CRC press.BalasubramanianM. (2014). Composite materials and processing (Vol. 711). Boca Raton: CRC press.Search in Google Scholar
Jagadish, C., & Pearton, S. J. (Eds.). (2011). Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier.JagadishC.PeartonS. J. (Eds.). (2011). Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier.Search in Google Scholar
Mozetič, M. (2019). Surface modification to improve properties of materials. Materials, 12(3), 441.MozetičM. (2019). Surface modification to improve properties of materials. Materials, 12(3), 441.Search in Google Scholar
Amherd Hidalgo, A., Frykholm, R., Ebel, T., & Pyczak, F. (2017). Powder metallurgy strategies to improve properties and processing of titanium alloys: A review. Advanced Engineering Materials, 19(6), 1600743.Amherd HidalgoA.FrykholmR.EbelT.PyczakF. (2017). Powder metallurgy strategies to improve properties and processing of titanium alloys: A review. Advanced Engineering Materials, 19(6), 1600743.Search in Google Scholar
Qiao Xu,Yuchen He,Shunqi Mei,Zhen Chen,Shaojun Wang & Xuemei Tang. (2022). Optimal Design of a Novel Magnetic Twisting Device based on NSGA-II Algorithm. Autex Research Journal(2),194-200.QiaoXuYuchenHeShunqiMeiZhenChenShaojunWangXuemeiTang (2022). Optimal Design of a Novel Magnetic Twisting Device based on NSGA-II Algorithm. Autex Research Journal(2),194-200.Search in Google Scholar
Xu Fan,Gao Ming,Ma Chao,Zhao Huiyan,Zhu Jianxiong & Zhang Zhen. (2023). Pareto optimal solution set strategy based on multiobjective optimization for the clinching tools. The International Journal of Advanced Manufacturing Technology(7-8),3375-3389.XuFanGaoMingMaChaoZhaoHuiyanZhuJianxiongZhangZhen (2023). Pareto optimal solution set strategy based on multiobjective optimization for the clinching tools. The International Journal of Advanced Manufacturing Technology(7-8),3375-3389.Search in Google Scholar
Birhanu Tadesa Edosa & Mosissa Geleta Erena. (2024). Wildlife habitat suitability analysis and mapping the former dhidhessa wildlife sanctuary using GIS-based analytical hierarchal process and weighted linear combination methods. Heliyon(13),e33921-e33921.Birhanu TadesaEdosaMosissa GeletaErena (2024). Wildlife habitat suitability analysis and mapping the former dhidhessa wildlife sanctuary using GIS-based analytical hierarchal process and weighted linear combination methods. Heliyon(13),e33921-e33921.Search in Google Scholar