Otwarty dostęp

Fault Diagnosis and Prognosis of Bearing Based on Hidden Markov Model with Multi-Features

,  oraz   
30 mar 2020

Zacytuj
Pobierz okładkę

Fig. 1

Proposed scheme for fault diagnosis.
Proposed scheme for fault diagnosis.

Fig. 2

M-state left-to-right HMM.
M-state left-to-right HMM.

Fig. 3

Training curves of various fault states of HMMs.
Training curves of various fault states of HMMs.

Fig. 4

Fault Identification results of training samples.
Fault Identification results of training samples.

Fig. 5

Identification results of various fault states of bearing for every 30 observation samples.
Identification results of various fault states of bearing for every 30 observation samples.

Fig. 6

Identification results of various fault states of bearing for every 100 observation samples.
Identification results of various fault states of bearing for every 100 observation samples.

Fig. 7

The lifetime curve of prediction test.
The lifetime curve of prediction test.

Some obtained observation values as the input of HMM_

States of faultsNo. of observation values
12345678910
Nor0.710.030.10.100.01000.050
R10.070.56.070.100.17000.030
R20.230.080.350.20.010.060.0400.010.02
R30.310.070.060.410.010.030.0400.070
I1000.020.010.840.070.01000.05
I20.040.30.070.060.130.370.020.0100
I3000.010.040.110.040.65000.15
O1000000.0200.9700.01
O20.370.10.020.32000.0100.180
O300.010.030.010.150.030.070.0300.67

Statistics of test results of various fault states for different sample lengths_

Length of observation samplesStates of faults
NorR1R2R3I1I2I3O1O2O3
1064.3%82.2%41.1%53.9%93.8%81.3%97.5%98.3%58.9%85.1%
2086.1%88.7%55.0%72.3%93.9%97.8%100%100%69.7%92.2%
3096.8%95.5%60.2%77.8%99.5%99.5%100%100%71.9%98.6%
40100%100%64.0%77.3%100%100%100%100%67.3%100%
50100%100%63.7%85.6%100%100%100%100%70.6%100%
60100%100%69.1%86.9%100%100%100%100%74.3%100%
70100%100%76.8%90.6%100%100%100%100%91.7%100%
80100%100%83.6%91.2%100%100%100%100%100%100%
90100%100%83.2%94.4%100%100%100%100%100%100%
100100%100%90.7%100%100%100%100%100%100%100%
110100%100%95.7%100%100%100%100%100%100%100%
120100%100%100%100%100%100%100%100%100%100%
130100%100%100%100%100%100%100%100%100%100%
140100%100%100%100%100%100%100%100%100%100%
150100%100%100%100%100%100%100%100%100%100%

The statistics of the overall training results using HMM_

States of faultsNorR1R2R3I1I2I3O1O2O3
Accuracy100%99%95%90%100%99%100%100%96%99%

Time-domain statistical characteristics_

ft1=1Ni=1Nxif{t_1} = {1 \over N}\sum\limits_{i = 1}^N {{x_i}} ft2=1Ni=1Nxi2f{t_2} = \sqrt {{1 \over N}\sum\limits_{i = 1}^N {x_i^2} } ft3=[1Ni=1N|xi|]2f{t_3} = {\left[ {{1 \over N}\sum\limits_{i = 1}^N {\sqrt {\left| {{x_i}} \right|} } } \right]^2}ft4=1Ni=1N|xi|f{t_4} = {1 \over N}\sum\limits_{i = 1}^N {\left| {{x_i}} \right|}
ft5=1Ni=1Nxi3f{t_5} = {1 \over N}\sum\limits_{i = 1}^N {x_i^3} ft6=1Ni=1Nxi4f{t_6} = {1 \over N}\sum\limits_{i = 1}^N {x_i^4} ft7=1N1i=1N(xiX¯)2f{t_7} = {1 \over {N - 1}}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \bar X} \right)}^2}} f t8 = max{|xi|}
f t9 = min{xi}f t10 = max(xi) − min(xi)ft11=ft2ft4f{t_{11}} = {{f{t_2}} \over {f{t_4}}}ft12=ft8ft2f{t_{12}} = {{f{t_8}} \over {f{t_2}}}
ft13=ft8ft4f{t_{13}} = {{f{t_8}} \over {f{t_4}}}ft14=ft8ft3f{t_{14}} = {{f{t_8}} \over {f{t_3}}}ft15=ft5ft23f{t_{15}} = {{f{t_5}} \over {ft_2^3}}ft16=ft6ft24f{t_{16}} = {{f{t_6}} \over {ft_2^4}}

Frequency-domain statistical characteristics_

ff1=k=1Ks(k)kf{f_1} = {{\sum\limits_{k = 1}^K {s(k)} } \over k}ff2=k=1K(s(k)ff1)2k1f{f_2} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^2}} } \over {k - 1}}ff3=k=1K(s(k)ff1)3k(p2)3f{f_3} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^3}} } \over {k{{\left( {\sqrt {{p_2}} } \right)}^3}}}ff4=k=1K(s(k)ff1)4kff22f{f_4} = {{\sum\limits_{k = 1}^K {{{\left( {s(k) - f{f_1}} \right)}^4}} } \over {k \cdot ff_2^2}}
ff5=k=1Kfks(k)k=1Ks(k)f{f_5} = {{\sum\limits_{k = 1}^K {{f_k}s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}ff6=k=1K(fkff5)2s(k)kf{f_6} = \sqrt {{{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^2}s(k)} } \over k}} ff7=k=1Kfk2s(k)k=1Ks(k)f{f_7} = \sqrt {{{\sum\limits_{k = 1}^K {f_k^2s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}} ff8=k=1Kfk4s(k)k=1Kfk2s(k)f{f_8} = \sqrt {{{\sum\limits_{k = 1}^K {f_k^4s(k)} } \over {\sum\limits_{k = 1}^K {f_k^2s(k)} }}}
ff9=k=1Kfk2s(k)k=1Ks(k)k=1Kfk4s(k)f{f_9} = {{\sum\limits_{k = 1}^K {f_k^2s(k)} } \over {\sqrt {\sum\limits_{k = 1}^K {s(k)} \sum\limits_{k = 1}^K {f_k^4s(k)} } }}ff10=ff6ff5f{f_{10}} = {{f{f_6}} \over {f{f_5}}}ff11=k=1K(fkff5)3s(k)kp63f{f_{11}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^3}s(k)} } \over {kp_6^3}}ff12=k=1K(fkff5)4s(k)kp64f{f_{12}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^4}s(k)} } \over {kp_6^4}}
ff13=k=1K(|fkp5|)12s(k)kp6f{f_{13}} = {{\sum\limits_{k = 1}^K {{{\left( {\left| {{f_k} - {p_5}} \right|} \right)}^{{1 \over 2}}}s(k)} } \over {k\sqrt {{p_6}} }}ff14=k=1K(fkff5)2s(k)k=1Ks(k)f{f_{14}} = {{\sum\limits_{k = 1}^K {{{\left( {{f_k} - f{f_5}} \right)}^2}s(k)} } \over {\sum\limits_{k = 1}^K {s(k)} }}
Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne