Otwarty dostęp

A study of the influence of audio signal processing technology on the expression of music aesthetics in piano performance

  
21 mar 2025

Zacytuj
Pobierz okładkę

Zölzer, U. (2022). Digital audio signal processing. John Wiley & Sons. ZölzerU. (2022). Digital audio signal processing. John Wiley & Sons.Search in Google Scholar

Holzapfel, A., Sturm, B., & Coeckelbergh, M. (2018). Ethical dimensions of music information retrieval technology. Transactions of the International Society for Music Information Retrieval, 1(1), 44-55. HolzapfelA.SturmB. & CoeckelberghM. (2018). Ethical dimensions of music information retrieval technology. Transactions of the International Society for Music Information Retrieval, 1(1), 44-55.Search in Google Scholar

Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S. Y., & Sainath, T. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 206-219. PurwinsH.LiB.VirtanenT.SchlüterJ.ChangS. Y. & SainathT. (2019). Deep learning for audio signal processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 206-219.Search in Google Scholar

Yuan, R., Ma, Y., Li, Y., Zhang, G., Chen, X., Yin, H., ... & Fu, J. (2023). Marble: Music audio representation benchmark for universal evaluation. Advances in Neural Information Processing Systems, 36, 39626-39647. YuanR.MaY.LiY.ZhangG.ChenX.YinH. ... & FuJ. (2023). Marble: Music audio representation benchmark for universal evaluation. Advances in Neural Information Processing Systems, 36, 39626-39647.Search in Google Scholar

Nieto, O., Mysore, G. J., Wang, C. I., Smith, J. B., Schlüter, J., Grill, T., & McFee, B. (2020). Audio-based music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval, 3(1). NietoO.MysoreG. J.WangC. I.SmithJ. B.SchlüterJ.GrillT. & McFeeB. (2020). Audio-based music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval, 3(1).Search in Google Scholar

Pons, J., Slizovskaia, O., Gong, R., Gómez, E., & Serra, X. (2017, August). Timbre analysis of music audio signals with convolutional neural networks. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 2744-2748). IEEE. PonsJ.SlizovskaiaO.GongR.GómezE. & SerraX. (2017, August). Timbre analysis of music audio signals with convolutional neural networks. In 2017 25th European Signal Processing Conference (EUSIPCO) (pp. 2744-2748). IEEE.Search in Google Scholar

Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2018). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 20-30. BenetosE.DixonS.DuanZ. & EwertS. (2018). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 20-30.Search in Google Scholar

Solanki, A., & Pandey, S. (2022). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 14(3), 1659-1668. SolankiA. & PandeyS. (2022). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 14(3), 1659-1668.Search in Google Scholar

Lerch, A. (2022). An introduction to audio content analysis: Music Information Retrieval tasks and applications. John Wiley & Sons. LerchA. (2022). An introduction to audio content analysis: Music Information Retrieval tasks and applications. John Wiley & Sons.Search in Google Scholar

Agres, K. R., Schaefer, R. S., Volk, A., Van Hooren, S., Holzapfel, A., Dalla Bella, S., ... & Magee, W. L. (2021). Music, computing, and health: a roadmap for the current and future roles of music technology for health care and well-being. Music & Science, 4, 2059204321997709. AgresK. R.SchaeferR. S.VolkA.Van HoorenS.HolzapfelA.Dalla BellaS. ... & MageeW. L. (2021). Music, computing, and health: a roadmap for the current and future roles of music technology for health care and well-being. Music & Science, 4, 2059204321997709.Search in Google Scholar

Cafaro, A., & Arneson, C. (2020). Audio technology: A tool for teachers and singers. Journal of Singing, 76(3), 311-16. CafaroA. & ArnesonC. (2020). Audio technology: A tool for teachers and singers. Journal of Singing, 76(3), 311-16.Search in Google Scholar

Cano, E., FitzGerald, D., Liutkus, A., Plumbley, M. D., & Stöter, F. R. (2018). Musical source separation: An introduction. IEEE Signal Processing Magazine, 36(1), 31-40. CanoE.FitzGeraldD.LiutkusA.PlumbleyM. D. & StöterF. R. (2018). Musical source separation: An introduction. IEEE Signal Processing Magazine, 36(1), 31-40.Search in Google Scholar

Simonetta, F., Ntalampiras, S., & Avanzini, F. (2019, January). Multimodal music information processing and retrieval: Survey and future challenges. In 2019 international workshop on multilayer music representation and processing (MMRP) (pp. 10-18). IEEE. SimonettaF.NtalampirasS. & AvanziniF. (2019, January). Multimodal music information processing and retrieval: Survey and future challenges. In 2019 international workshop on multilayer music representation and processing (MMRP) (pp. 10-18). IEEE.Search in Google Scholar

Drott, E. A. (2018). Music as a Technology of Surveillance. Journal of the Society for American Music, 12(3), 233-267. DrottE. A. (2018). Music as a Technology of Surveillance. Journal of the Society for American Music, 12(3), 233-267.Search in Google Scholar

Vincent, E., Virtanen, T., & Gannot, S. (Eds.). (2018). Audio source separation and speech enhancement. John Wiley & Sons. VincentE.VirtanenT. & GannotS. (Eds.). (2018). Audio source separation and speech enhancement. John Wiley & Sons.Search in Google Scholar

Pons, J., & Serra, X. (2019, May). Randomly weighted cnns for (music) audio classification. In ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 336-340). IEEE. PonsJ. & SerraX. (2019, May). Randomly weighted cnns for (music) audio classification. In ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 336-340). IEEE.Search in Google Scholar

Nam, J., Choi, K., Lee, J., Chou, S. Y., & Yang, Y. H. (2018). Deep learning for audio-based music classification and tagging: Teaching computers to distinguish rock from bach. IEEE signal processing magazine, 36(1), 41-51. NamJ.ChoiK.LeeJ.ChouS. Y. & YangY. H. (2018). Deep learning for audio-based music classification and tagging: Teaching computers to distinguish rock from bach. IEEE signal processing magazine, 36(1), 41-51.Search in Google Scholar

Jensenius, A. R., & Lyons, M. J. (Eds.). (2017). A nime reader: Fifteen years of new interfaces for musical expression (Vol. 3). Springer. JenseniusA. R. & LyonsM. J. (Eds.). (2017). A nime reader: Fifteen years of new interfaces for musical expression (Vol. 3). Springer.Search in Google Scholar

Presannakumar Krishna & Mohamed Anuj. (2023). Source identification of weak audio signals using attention based convolutional neural network. Applied Intelligence(22),27044-27059. KrishnaPresannakumar & AnujMohamed. (2023). Source identification of weak audio signals using attention based convolutional neural network. Applied Intelligence(22),27044-27059.Search in Google Scholar

Mateusz Materlak & Ewelina Majda Zdancewicz. (2023). Classification of Engine Type of Vehicle Based on Audio Signal as a Source of Identification. Electronics(9), MaterlakMateusz & ZdancewiczEwelina Majda. (2023). Classification of Engine Type of Vehicle Based on Audio Signal as a Source of Identification. Electronics(9),Search in Google Scholar

Zehua Ying,Zixuan Yan,Xuting Guo,Cunhao Li,Guoxiang Li,Xingli He & Wenlong Li. (2025). Portable Raman spectroscopy and fourier transform near infrared spectroscopy for the quantification of different sinomenine hydrochloride crystal forms. Journal of Pharmaceutical and Biomedical Analysis116567-116567. YingZehuaYanZixuanGuoXutingLiCunhaoLiGuoxiangHeXingli & LiWenlong. (2025). Portable Raman spectroscopy and fourier transform near infrared spectroscopy for the quantification of different sinomenine hydrochloride crystal forms. Journal of Pharmaceutical and Biomedical Analysis116567-116567.Search in Google Scholar

Ehsan Rahimi & Pinliang Dong. (2024). Assessing Landscape Fragmentation Dynamics with Fourier Transforms. Journal of Landscape Ecology(3),97-112. RahimiEhsan & DongPinliang. (2024). Assessing Landscape Fragmentation Dynamics with Fourier Transforms. Journal of Landscape Ecology(3),97-112.Search in Google Scholar

Xinyi Liu,Di Wang,Rui Wang,Bin Hu,Jinbang Wang,Yali Liu... & Weihua Feng. (2025). Integrating progressive screening strategy-based continuous wavelet transform with EfficientNetV2 for enhanced near-infrared spectroscopy.Talanta127188-127188. LiuXinyiWangDiWangRuiHuBinWangJinbangLiuYali... & FengWeihua. (2025). Integrating progressive screening strategy-based continuous wavelet transform with EfficientNetV2 for enhanced near-infrared spectroscopy.Talanta127188-127188.Search in Google Scholar

Arasti Afrasiabi,Asaad Faramarzi,David Chapman & Alireza Keshavarzi. (2025). Optimising Ground Penetrating Radar data interpretation: A hybrid approach with AI-assisted Kalman Filter and Wavelet Transform for detecting and locating buried utilities. Journal of Applied Geophysics105567-105567. AfrasiabiArastiFaramarziAsaadChapmanDavid & KeshavarziAlireza. (2025). Optimising Ground Penetrating Radar data interpretation: A hybrid approach with AI-assisted Kalman Filter and Wavelet Transform for detecting and locating buried utilities. Journal of Applied Geophysics105567-105567.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne