This work is licensed under the Creative Commons Attribution 4.0 International License.
Souza de Cursi, E. (2021). Uncertainty quantification in game theory. Chaos, Solitons & Fractals, 143, 110558. https://doi.org/10.1016/j.chaos.2020.110558Search in Google Scholar
Gal, Y., Koumoutsakos, P., Lanusse, F., et al. (2022). Bayesian uncertainty quantification for machine-learned models in physics. Nature Reviews Physics, 4(9), 573-577. https://doi.org/10.1038/s42254-022-00498-4Search in Google Scholar
Acar, P. (2021). Recent progress of uncertainty quantification in small-scale materials science. Progress in Materials Science, 117, 100723. https://doi.org/10.1016/j.pmatsci.2020.100723Search in Google Scholar
Xing, Y., Su, Y., & Ma, W. (2023). Ensemble Multi-Quantiles: Adaptively Flexible Distribution Prediction for Uncertainty Quantification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 0(0), 1-14. https://doi.org/10.1109/tpami.2023.3288028Search in Google Scholar
Franchi, G., Bursuc, A., Aldea, E., et al. (2024). Encoding the Latent Posterior of Bayesian Neural Networks for Uncertainty Quantification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 0(0), 1-13. doiSearch in Google Scholar
Janjić, T., Lukáčová-Medviďová, M., Ruckstuhl, Y., et al. (2023). Comparison of uncertainty quantification methods for cloud simulation. Quarterly Journal of the Royal Meteorological Society, 149(756), 2895-2910. https://doi.org/10.1002/qj.4537Search in Google Scholar
Rolph, G. D., Stein, A., & Stunder, B. J. B. (2017). Real-time Environmental Applications and Display System: READY. Environmental Modelling and Software, 95, 210-228. https://doi.org/10.1016/j.envsoft.2017.06.025Search in Google Scholar
Yu, K., Guo, G., Li, J., et al. (2020). Quantum algorithms for similarity measurement based on Euclidean distance. International Journal of Theoretical Physics, 59(10), 3134-3144. https://doi.org/10.1007/s10773-020-04567-1Search in Google Scholar
Zhang, H., Yang, D., Li, J., et al. (2022). Dynamic Time Warping Under Product Quantization, With Applications to Time-Series Data Similarity Search. IEEE Internet of Things Journal, 9(14), 11814-11826. https://doi.org/10.1109/jiot.2021.3132017Search in Google Scholar
Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. null, 0(0), 0-0. https://doi.org/10.1145/1066157.1066213Search in Google Scholar
Li, R., Deka, J. K., & Deka, K. N. (2023). An algorithm for the longest common subsequence and substring problem. Journal of Mathematics and Informatics, 25(0), 77-81. https://doi.org/10.22457/jmi.v25a08231Search in Google Scholar
Hung, C. C., Peng, W. C., & Lee, W. C. (2015). Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. The VLDB Journal, 24(2), 169-192.Search in Google Scholar
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306Search in Google Scholar
Ren, Z. (2022). The advance of generative model and variational autoencoder. In 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS) (pp. 0-0). https://doi.org/10.1109/tocs56154.2022.10016057Search in Google Scholar
Bustos, J. P., Donoso, F., Guesalaga, A., et al. (2007). Matching radar and satellite images for ship trajectory estimation using the Hausdorff distance. IET Radar Sonar & Navigation, 1(1), 50-58.Search in Google Scholar
Di, Y., Chao, Z., Zhu, Z., et al. (2017). Trajectory clustering via deep representation learning. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.Search in Google Scholar
MacQueen, J. (1965). Some methods for classification and analysis of multivariate observations. In Proceedings of the Berkeley Symposium on Mathematical Statistics & Probability (pp. 281-297).Search in Google Scholar
Kobak, D., & Linderman, G. C. (2021). Initialization is critical for preserving global data structure in both t-SNE and UMAP. Nature Biotechnology, 39(2), 156-157. https://doi.org/10.1038/s41587-020-00809-zSearch in Google Scholar