Accesso libero

Revan and hyper-Revan indices of Octahedral and icosahedral networks

,  e   
03 ott 2018
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Let G be a connected graph with vertex set V(G) and edge set E(G). Recently, the Revan vertex degree concept is defined in Chemical Graph Theory. The first and second Revan indices of G are defined as R1(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)] and R2(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)], where uv means that the vertex u and edge v are adjacent in G. The first and second hyper-Revan indices of G are defined as HR1(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)]2 and HR2(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)]2. In this paper, we compute the first and second kind of Revan and hyper-Revan indices for the octahedral and icosahedral networks.

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro