Uneingeschränkter Zugang

Revan and hyper-Revan indices of Octahedral and icosahedral networks

,  und   
03. Okt. 2018

Zitieren
COVER HERUNTERLADEN

Let G be a connected graph with vertex set V(G) and edge set E(G). Recently, the Revan vertex degree concept is defined in Chemical Graph Theory. The first and second Revan indices of G are defined as R1(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)] and R2(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)], where uv means that the vertex u and edge v are adjacent in G. The first and second hyper-Revan indices of G are defined as HR1(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u) + rG(v)]2 and HR2(G) = uvE$\begin{array}{} \displaystyle \sum\limits_{uv\in E} \end{array}$[rG(u)rG(v)]2. In this paper, we compute the first and second kind of Revan and hyper-Revan indices for the octahedral and icosahedral networks.

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere