This work is licensed under the Creative Commons Attribution 4.0 International License.
Wang, W., Huang, H., Peng, X., Wang, Z., & Zeng, Y. (2024). Utilizing support vector machines to foster sustainable development and innovation in the clean energy sector via green finance. Journal of Environmental Management, 360, 121225. https://doi.org/10.1016/j.jenvman.2024.121225WangW.HuangH.PengX.WangZ.ZengY. (2024). Utilizing support vector machines to foster sustainable development and innovation in the clean energy sector via green finance. Journal of Environmental Management, 360, 121225. https://doi.org/10.1016/j.jenvman.2024.121225Search in Google Scholar
Lannelongue, L., Grealey, J., & Inouye, M. (2021). Green algorithms: quantifying the carbon footprint of computation. Advanced Science, 8(12), 2100707. https://doi.org/10.1002/advs.202100707LannelongueL.GrealeyJ.InouyeM. (2021). Green algorithms: quantifying the carbon footprint of computation. Advanced Science, 8(12), 2100707. https://doi.org/10.1002/advs.202100707Search in Google Scholar
He, Y., Liu, X., Sun, E., & Wu, D. (2024). Balancing economic growth and environmental conservation through the optimization of rail transit routes for sustainable development. Scientific Reports, 14(1), 31926. https://doi.org/10.1038/s41598-024-83462-9HeY.LiuX.SunE.WuD. (2024). Balancing economic growth and environmental conservation through the optimization of rail transit routes for sustainable development. Scientific Reports, 14(1), 31926. https://doi.org/10.1038/s41598-024-83462-9Search in Google Scholar
Johnstone, I. M., & Titterington, D. M. (2009). Statistical challenges of high-dimensional data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906), 4237-4253. https://doi.org/10.1098/rsta.2009.0159JohnstoneI. M.TitteringtonD. M. (2009). Statistical challenges of high-dimensional data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906), 4237-4253. https://doi.org/10.1098/rsta.2009.0159Search in Google Scholar
Liu, Z., Sun, Y., Xing, C., Liu, J., He, Y., Zhou, Y., & Zhang, G. (2022). Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives. Energy and AI, 10, 100195. https://doi.org/10.1016/j.egyai.2022.100195LiuZ.SunY.XingC.LiuJ.HeY.ZhouY.ZhangG. (2022). Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: Challenges and future perspectives. Energy and AI, 10, 100195. https://doi.org/10.1016/j.egyai.2022.100195Search in Google Scholar
Tan, R. R., Aviso, K. B., & Ng, D. K. S. (2019). Optimization models for financing innovations in green energy technologies. Renewable and Sustainable Energy Reviews, 113, 109258. https://doi.org/10.1016/j.rser.2019.109258TanR. R.AvisoK. B.NgD. K. S. (2019). Optimization models for financing innovations in green energy technologies. Renewable and Sustainable Energy Reviews, 113, 109258. https://doi.org/10.1016/j.rser.2019.109258Search in Google Scholar
Bell, M. L., Hobbs, B. F., Elliott, E. M., Ellis, H., & Robinson, Z. (2001). An evaluation of multi-criteria methods in integrated assessment of climate policy. Journal of Multi-Criteria Decision Analysis, 10(5), 229-256. https://doi.org/10.1002/mcda.305BellM. L.HobbsB. F.ElliottE. M.EllisH.RobinsonZ. (2001). An evaluation of multi-criteria methods in integrated assessment of climate policy. Journal of Multi-Criteria Decision Analysis, 10(5), 229-256. https://doi.org/10.1002/mcda.305Search in Google Scholar
Aïd, R., & Biagini, S. (2023). Optimal dynamic regulation of carbon emissions market. Mathematical Finance, 33(1), 80-115. https://doi.org/10.1111/mafi.12364AïdR.BiaginiS. (2023). Optimal dynamic regulation of carbon emissions market. Mathematical Finance, 33(1), 80-115. https://doi.org/10.1111/mafi.12364Search in Google Scholar
Andronie, M., Lăzăroiu, G., Karabolevski, O. L., Ștefănescu, R., Hurloiu, I., Dijmărescu, A., & Dijmărescu, I. (2022). Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the Internet of Robotic Things. Electronics, 12(1), 22. https://doi.org/10.3390/electronics12010022AndronieM.LăzăroiuG.KarabolevskiO. L.ȘtefănescuR.HurloiuI.DijmărescuA.DijmărescuI. (2022). Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the Internet of Robotic Things. Electronics, 12(1), 22. https://doi.org/10.3390/electronics12010022Search in Google Scholar
Sovacool, B. K., Baum, C. M., & Low, S. (2023). Risk-risk governance in a low-carbon future: Exploring institutional, technological, and behavioral tradeoffs in climate geoengineering pathways. Risk Analysis, 43(4), 838-859. https://doi.org/10.1111/risa.13932SovacoolB. K.BaumC. M.LowS. (2023). Risk-risk governance in a low-carbon future: Exploring institutional, technological, and behavioral tradeoffs in climate geoengineering pathways. Risk Analysis, 43(4), 838-859. https://doi.org/10.1111/risa.13932Search in Google Scholar
Mahmood, F., Zaied, Y. B., & Abedin, M. Z. (2024). Role of green finance instruments in shaping economic cycles. Technological Forecasting and Social Change, 209, 123792. https://doi.org/10.1016/j.techfore.2024.123792MahmoodF.ZaiedY. B.AbedinM. Z. (2024). Role of green finance instruments in shaping economic cycles. Technological Forecasting and Social Change, 209, 123792. https://doi.org/10.1016/j.techfore.2024.123792Search in Google Scholar
Xu, Z., Cheng, X., Wang, K., & Yang, S. (2020). Analysis of the environmental trend of network finance and its influence on traditional commercial banks. Journal of Computational and Applied Mathematics, 379, 112907. https://doi.org/10.1016/j.cam.2020.112907XuZ.ChengX.WangK.YangS. (2020). Analysis of the environmental trend of network finance and its influence on traditional commercial banks. Journal of Computational and Applied Mathematics, 379, 112907. https://doi.org/10.1016/j.cam.2020.112907Search in Google Scholar
Li, W., & Wu, Z. (2022). A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria. Applied Soft Computing, 128, 109476. https://doi.org/10.1016/j.asoc.2022.109476LiW.WuZ. (2022). A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria. Applied Soft Computing, 128, 109476. https://doi.org/10.1016/j.asoc.2022.109476Search in Google Scholar
Saleem, R., Yuan, B., Kurugollu, F., Anjum, A., & Liu, L. (2022). Explaining deep neural networks: A survey on the global interpretation methods. Neurocomputing, 513, 165-180. https://doi.org/10.1016/j.neucom.2022.09.129SaleemR.YuanB.KurugolluF.AnjumA.LiuL. (2022). Explaining deep neural networks: A survey on the global interpretation methods. Neurocomputing, 513, 165-180. https://doi.org/10.1016/j.neucom.2022.09.129Search in Google Scholar
Cheng, Q., Wang, X., Wang, S., Li, Y., Liu, H., Li, Z., & Sun, W. (2023). Research on a carbon emission prediction method for oil field transfer stations based on an improved genetic algorithm—The decision tree algorithm. Processes, 11(9), 2738. https://doi.org/10.3390/pr11092738ChengQ.WangX.WangS.LiY.LiuH.LiZ.SunW. (2023). Research on a carbon emission prediction method for oil field transfer stations based on an improved genetic algorithm-The decision tree algorithm. Processes, 11(9), 2738. https://doi.org/10.3390/pr11092738Search in Google Scholar
Tan, K. C., Lee, T. H., & Khor, E. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), 251-290. https://doi.org/10.1023/A:1015516501242TanK. C.LeeT. H.KhorE. F. (2002). Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 17(4), 251-290. https://doi.org/10.1023/A:1015516501242Search in Google Scholar
Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms: A comprehensive review. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, 185-231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4Abdel-BassetM.Abdel-FatahL.SangaiahA. K. (2018). Metaheuristic algorithms: A comprehensive review. Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, 185-231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4Search in Google Scholar
Vemulapalli, G. (2023). Operationalizing machine learning best practices for scalable production deployments. International Machine Learning Journal and Computer Engineering, 6(6), 1-21. https://mljce.in/index.php/Imljce/article/view/30VemulapalliG. (2023). Operationalizing machine learning best practices for scalable production deployments. International Machine Learning Journal and Computer Engineering, 6(6), 1-21. https://mljce.in/index.php/Imljce/article/view/30Search in Google Scholar
Chen, J., Peng, D., Liu, Z., Wu, L., & Jiang, M. (2024). A sustainable model for forecasting carbon emission trading prices. Sustainability, 16(19), 8324. https://doi.org/10.3390/su16198324ChenJ.PengD.LiuZ.WuL.JiangM. (2024). A sustainable model for forecasting carbon emission trading prices. Sustainability, 16(19), 8324. https://doi.org/10.3390/su16198324Search in Google Scholar
Mayer, M. J., Szilágyi, A., & Gróf, G. (2020). Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058MayerM. J.SzilágyiA.GrófG. (2020). Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058Search in Google Scholar
Rubtsov, A., & Shen, S. (2024). Dynamic portfolio decisions with climate risk and model uncertainty. Journal of Sustainable Finance & Investment, 14(2), 344-365. https://doi.org/10.1080/20430795.2022.2045890RubtsovA.ShenS. (2024). Dynamic portfolio decisions with climate risk and model uncertainty. Journal of Sustainable Finance & Investment, 14(2), 344-365. https://doi.org/10.1080/20430795.2022.2045890Search in Google Scholar
Oyebode, O., Babatunde, D. E., Monyei, C. G., & Babatunde, O. M. (2019). Water demand modelling using evolutionary computation techniques: integrating water equity and justice for realization of the sustainable development goals. Heliyon, 5(11). https://doi.org/10.1016/j.heliyon.2019.e02796OyebodeO.BabatundeD. E.MonyeiC. G.BabatundeO. M. (2019). Water demand modelling using evolutionary computation techniques: integrating water equity and justice for realization of the sustainable development goals. Heliyon, 5(11. https://doi.org/10.1016/j.heliyon.2019.e02796Search in Google Scholar
Fikri, N., Rida, M., Abghour, N., Moussaid, K., & El Omri, A. (2019). An adaptive and real-time based architecture for financial data integration. Journal of Big Data, 6, 1-25. https://doi.org/10.1186/s40537-019-0260-xFikriN.RidaM.AbghourN.MoussaidK., El OmriA. (2019). An adaptive and real-time based architecture for financial data integration. Journal of Big Data, 6, 1-25. https://doi.org/10.1186/s40537-019-0260-xSearch in Google Scholar
Mardani, A., Liao, H., Nilashi, M., Alrasheedi, M., & Cavallaro, F. (2020). A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. Journal of Cleaner Production, 275, 122942. https://doi.org/10.1016/j.jclepro.2020.122942MardaniA.LiaoH.NilashiM.AlrasheediM.CavallaroF. (2020). A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. Journal of Cleaner Production, 275, 122942. https://doi.org/10.1016/j.jclepro.2020.122942Search in Google Scholar
Wenstøp, F., & Seip, K. (2001). Legitimacy and quality of multi-criteria environmental policy analysis. Journal of Multi-Criteria Decision Analysis, 10(2), 53-64. https://doi.org/10.1002/mcda.289WenstøpF.SeipK. (2001). Legitimacy and quality of multi-criteria environmental policy analysis. Journal of Multi-Criteria Decision Analysis, 10(2), 53-64. https://doi.org/10.1002/mcda.289Search in Google Scholar
Li, R., Wang, W., Wu, X., Tang, F., & Chen, Z. (2019). Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis. Energy, 168, 30-42. https://doi.org/10.1016/j.energy.2018.11.069LiR.WangW.WuX.TangF.ChenZ. (2019). Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis. Energy, 168, 30-42. https://doi.org/10.1016/j.energy.2018.11.069Search in Google Scholar
Shuai, H., Chuanzheng, L., & Goda, K. (2023). Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action. Chinese Journal of Geotechnical Engineering, 45(2), 336-344.ShuaiH.ChuanzhengL.GodaK. (2023). Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action. Chinese Journal of Geotechnical Engineering, 45(2), 336-344.Search in Google Scholar