This work is licensed under the Creative Commons Attribution 4.0 International License.
[1] Sahebkar Farkhani, J., Zareein, M., Najafi, A., Melicio, R., & Rodrigues, E. M. (2020). The power system and microgrid protection—A review. Applied Sciences, 10(22), 8271.Sahebkar FarkhaniJ.ZareeinM.NajafiA.MelicioR.RodriguesE. M. (2020). The power system and microgrid protection—A review. Applied Sciences, 10(22), 8271.Search in Google Scholar
[2] Chandak, S., & Rout, P. K. (2021). The implementation framework of a microgrid: A review. International Journal of Energy Research, 45(3), 3523-3547.ChandakS.RoutP. K. (2021). The implementation framework of a microgrid: A review. International Journal of Energy Research, 45(3), 3523-3547.Search in Google Scholar
[3] Nosratabadi, S. M., Hooshmand, R. A., & Gholipour, E. (2017). A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renewable and Sustainable Energy Reviews, 67, 341-363.NosratabadiS. M.HooshmandR. A.GholipourE. (2017). A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renewable and Sustainable Energy Reviews, 67, 341-363.Search in Google Scholar
[4] Li, Z., Shahidehpour, M., Aminifar, F., Alabdulwahab, A., & Al-Turki, Y. (2017). Networked microgrids for enhancing the power system resilience. Proceedings of the IEEE, 105(7), 1289-1310.LiZ.ShahidehpourM.AminifarF.AlabdulwahabA.Al-TurkiY. (2017). Networked microgrids for enhancing the power system resilience. Proceedings of the IEEE, 105(7), 1289-1310.Search in Google Scholar
[5] Elsied, M., Oukaour, A., Gualous, H., & Brutto, O. A. L. (2016). Optimal economic and environment operation of micro-grid power systems. Energy conversion and management, 122, 182-194.ElsiedM.OukaourA.GualousH.BruttoO. A. L. (2016). Optimal economic and environment operation of micro-grid power systems. Energy conversion and management, 122, 182-194.Search in Google Scholar
[6] Adefarati, T., Bansal, R. C., & Justo, J. J. (2017). Reliability and economic evaluation of a microgrid power system. Energy Procedia, 142, 43-48.AdefaratiT.BansalR. C.JustoJ. J. (2017). Reliability and economic evaluation of a microgrid power system. Energy Procedia, 142, 43-48.Search in Google Scholar
[7] Adefarati, T., & Bansal, R. C. (2017). Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Applied Energy, 206, 911-933.AdefaratiT.BansalR. C. (2017). Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Applied Energy, 206, 911-933.Search in Google Scholar
[8] Hartono, B. S., Budiyanto, Y., & Setiabudy, R. (2013, June). Review of microgrid technology. In 2013 international conference on QiR (pp. 127-132). IEEE.HartonoB. S.BudiyantoY.SetiabudyR. (2013, June). Review of microgrid technology. In 2013 international conference on QiR (pp. 127-132). IEEE.Search in Google Scholar
[9] Adefarati, T., & Bansal, R. C. (2019). Application of renewable energy resources in a microgrid power system. The Journal of Engineering, 2019(18), 5308-5313.AdefaratiT.BansalR. C. (2019). Application of renewable energy resources in a microgrid power system. The Journal of Engineering, 2019(18), 5308-5313.Search in Google Scholar
[10] Prevedello, G., & Werth, A. (2021). The benefits of sharing in off-grid microgrids: A case study in the Philippines. Applied Energy, 303, 117605.PrevedelloG.WerthA. (2021). The benefits of sharing in off-grid microgrids: A case study in the Philippines. Applied Energy, 303, 117605.Search in Google Scholar
[11] Wai, R. J., Zhang, Q. Q., & Wang, Y. (2018). A novel voltage stabilization and power sharing control method based on virtual complex impedance for an off-grid microgrid. IEEE Transactions on Power Electronics, 34(2), 1863-1880.WaiR. J.ZhangQ. Q.WangY. (2018). A novel voltage stabilization and power sharing control method based on virtual complex impedance for an off-grid microgrid. IEEE Transactions on Power Electronics, 34(2), 1863-1880.Search in Google Scholar
[12] Khodayar, M. E. (2017). Rural electrification and expansion planning of off-grid microgrids. The Electricity Journal, 30(4), 68-74.KhodayarM. E. (2017). Rural electrification and expansion planning of off-grid microgrids. The Electricity Journal, 30(4), 68-74.Search in Google Scholar
[13] Salihu, T. Y., Akorede, M. F., Abdulkarim, A., & Abdullateef, A. I. (2020). Off-grid photovoltaic microgrid development for rural electrification in Nigeria. The Electricity Journal, 33(5), 106765.SalihuT. Y.AkoredeM. F.AbdulkarimA.AbdullateefA. I. (2020). Off-grid photovoltaic microgrid development for rural electrification in Nigeria. The Electricity Journal, 33(5), 106765.Search in Google Scholar
[14] Sharma, H., Pal, N., & Sadhu, P. K. (2015). Modeling and simulation of off-grid power generation system using photovoltaic. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3), 418-424.SharmaH.PalN.SadhuP. K. (2015). Modeling and simulation of off-grid power generation system using photovoltaic. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3), 418-424.Search in Google Scholar
[15] Ali, M., Riaz, M., Koondhar, M. A., Akram, M. S., Guerrero, J. M., Vasquez, J. C., & Khan, B. (2023). Renewable energy sources-based hybrid microgrid system for off-grid electricity solution for rural communities. Energy Science & Engineering, 11(10), 3486-3499.AliM.RiazM.KoondharM. A.AkramM. S.GuerreroJ. M.VasquezJ. C.KhanB. (2023). Renewable energy sources-based hybrid microgrid system for off-grid electricity solution for rural communities. Energy Science & Engineering, 11(10), 3486-3499.Search in Google Scholar
[16] Mohanty, P., Sharma, K. R., Gujar, M., Kolhe, M., & Azmi, A. N. (2016). PV system design for off-grid applications. Solar Photovoltaic System Applications: A Guidebook for Off-Grid Electrification, 49-83.MohantyP.SharmaK. R.GujarM.KolheM.AzmiA. N. (2016). PV system design for off-grid applications. Solar Photovoltaic System Applications: A Guidebook for Off-Grid Electrification, 49-83.Search in Google Scholar
[17] Hassan, Q. (2021). Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renewable Energy, 164, 375-390.HassanQ. (2021). Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renewable Energy, 164, 375-390.Search in Google Scholar
[18] Gothwal, N., Manglani, T., & Doda, D. K. (2018). Importance of Off-Grid power generation using renewable energy resources-A Review. International Journal of Computer Applications, 179(28), 38-41.GothwalN.ManglaniT.DodaD. K. (2018). Importance of Off-Grid power generation using renewable energy resources-A Review. International Journal of Computer Applications, 179(28), 38-41.Search in Google Scholar
[19] Bilich, A., Langham, K., Geyer, R., Goyal, L., Hansen, J., Krishnan, A., … & Sinha, P. (2017). Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environmental science & technology, 51(2), 1043-1052.BilichA.LanghamK.GeyerR.GoyalL.HansenJ.KrishnanA.SinhaP. (2017). Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environmental science & technology, 51(2), 1043-1052.Search in Google Scholar
[20] Karthikeyan, V., Rajasekar, S., Das, V., Karuppanan, P., & Singh, A. K. (2017). Grid-connected and off-grid solar photovoltaic system. Smart energy grid design for island countries: Challenges and opportunities, 125-157.KarthikeyanV.RajasekarS.DasV.KaruppananP.SinghA. K. (2017). Grid-connected and off-grid solar photovoltaic system. Smart energy grid design for island countries: Challenges and opportunities, 125-157.Search in Google Scholar
[21] Yu Huang, Sijun Li, Peng Zhang, Dongfeng Wang, Jianjiang Lan, Kwang Y. Lee & Qiliang Zhang. (2024). Parameter adaptive stochastic model predictive control for wind–solar–hydrogen coupled power system. Renewable Energy(PA),121355-121355.HuangYuLiSijunZhangPengWangDongfengLanJianjiangLeeKwang Y.ZhangQiliang (2024). Parameter adaptive stochastic model predictive control for wind–solar–hydrogen coupled power system. Renewable Energy(PA),121355-121355.Search in Google Scholar
[22] Yinghao Ma, Shuai Wang, Hejun Yang, Dabo Zhang & Yuming Shen. (2024). Two-stage optimization model for day-ahead scheduling of electricity-heat microgrids with solid electric thermal storage considering heat flexibility. Journal of Energy Storage112329-112329.MaYinghaoWangShuaiYangHejunZhangDaboShenYuming (2024). Two-stage optimization model for day-ahead scheduling of electricity-heat microgrids with solid electric thermal storage considering heat flexibility. Journal of Energy Storage112329-112329.Search in Google Scholar
[23] Dong Yu, Shan Gao, Haiteng Han, Xin Zhao, Chuanshen Wu, Yu Liu & Tiancheng E. Song. (2024). Intraday two-stage hierarchical optimal scheduling model for multiarea AC/DC systems with wind power integration. Applied Energy123079-.YuDongGaoShanHanHaitengZhaoXinWuChuanshenLiuYuSongTiancheng E. (2024). Intraday two-stage hierarchical optimal scheduling model for multiarea AC/DC systems with wind power integration. Applied Energy123079-.Search in Google Scholar