This work is licensed under the Creative Commons Attribution 4.0 International License.
Lee, K., Jeon, S., Kim, H., & Kum, D. (2019). Optimal path tracking control of autonomous vehicle: Adaptive full-state linear quadratic Gaussian (LQG) control. IEEE Access, 7, 109120-109133.LeeK.JeonS.KimH. & KumD. (2019). Optimal path tracking control of autonomous vehicle: Adaptive full-state linear quadratic Gaussian (LQG) control. IEEE Access, 7, 109120-109133.Search in Google Scholar
Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., & Horn, M. (2018, October). Search-based optimal motion planning for automated driving. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4523-4530). IEEE.AjanovicZ.LacevicB.ShyrokauB.StolzM. & HornM. (2018, October). Search-based optimal motion planning for automated driving. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4523-4530). IEEE.Search in Google Scholar
Mischinger, M., Rudigier, M., Wimmer, P., & Kerschbaumer, A. (2019). Towards comfort-optimal trajectory planning and control. Vehicle System Dynamics.MischingerM.RudigierM.WimmerP. & KerschbaumerA. (2019). Towards comfort-optimal trajectory planning and control. Vehicle System Dynamics.Search in Google Scholar
Lim, W., Lee, S., Sunwoo, M., & Jo, K. (2018). Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Transactions on Intelligent Transportation Systems, 19(2), 613-626.LimW.LeeS.SunwooM. & JoK. (2018). Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method. IEEE Transactions on Intelligent Transportation Systems, 19(2), 613-626.Search in Google Scholar
Ljungqvist, O., Evestedt, N., Axehill, D., Cirillo, M., & Pettersson, H. (2019). A path planning and path‐ following control framework for a general 2‐trailer with a car‐like tractor. Journal of field robotics, 36(8), 1345-1377.LjungqvistO.EvestedtN.AxehillD.CirilloM. & PetterssonH. (2019). A path planning and path‐ following control framework for a general 2‐trailer with a car‐like tractor. Journal of field robotics, 36(8), 1345-1377.Search in Google Scholar
Sundarraj, S., Reddy, R. V. K., Basam, M. B., Lokesh, G. H., Flammini, F., & Natarajan, R. (2023). Route planning for an autonomous robotic vehicle employing a weight-controlled particle Swarm-optimized dijkstra algorithm. IEEE Access, 11, 92433-92442.SundarrajS.ReddyR. V. K.BasamM. B.LokeshG. H.FlamminiF. & NatarajanR. (2023). Route planning for an autonomous robotic vehicle employing a weight-controlled particle Swarm-optimized dijkstra algorithm. IEEE Access, 11, 92433-92442.Search in Google Scholar
Malikopoulos, A. A., Hong, S., Park, B. B., Lee, J., & Ryu, S. (2018). Optimal control for speed harmonization of automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(7), 2405-2417.MalikopoulosA. A.HongS.ParkB. B.LeeJ. & RyuS. (2018). Optimal control for speed harmonization of automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(7), 2405-2417.Search in Google Scholar
Huang, Y., Ding, H., Zhang, Y., Wang, H., Cao, D., Xu, N., & Hu, C. (2019). A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 67(2), 1376-1386.HuangY.DingH.ZhangY.WangH.CaoD.XuN. & HuC. (2019). A motion planning and tracking framework for autonomous vehicles based on artificial potential field elaborated resistance network approach. IEEE Transactions on Industrial Electronics, 67(2), 1376-1386.Search in Google Scholar
Fisac, J. F., Bronstein, E., Stefansson, E., Sadigh, D., Sastry, S. S., & Dragan, A. D. (2019, May). Hierarchical game-theoretic planning for autonomous vehicles. In 2019 International conference on robotics and automation (ICRA) (pp. 9590-9596). IEEE.FisacJ. F.BronsteinE.StefanssonE.SadighD.SastryS. S. & DraganA. D. (2019, May). Hierarchical game-theoretic planning for autonomous vehicles. In 2019 International conference on robotics and automation (ICRA) (pp. 9590-9596). IEEE.Search in Google Scholar
Erke, S., Bin, D., Yiming, N., Qi, Z., Liang, X., & Dawei, Z. (2020). An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems, 17(5), 1729881420962263.ErkeS.BinD.YimingN.QiZ.LiangX. & DaweiZ. (2020). An improved A-Star based path planning algorithm for autonomous land vehicles. International Journal of Advanced Robotic Systems, 17(5), 1729881420962263.Search in Google Scholar
Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021). A survey of path planning algorithms for mobile robots. Vehicles, 3(3), 448-468.KarurK.SharmaN.DharmattiC. & SiegelJ. E. (2021). A survey of path planning algorithms for mobile robots. Vehicles, 3(3), 448-468.Search in Google Scholar
Rösmann, C., Hoffmann, F., & Bertram, T. (2017, September). Kinodynamic trajectory optimization and control for car-like robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5681-5686). IEEE.RösmannC.HoffmannF. & BertramT. (2017, September). Kinodynamic trajectory optimization and control for car-like robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5681-5686). IEEE.Search in Google Scholar
Novi, T., Liniger, A., Capitani, R., & Annicchiarico, C. (2020). Real-time control for at-limit handling driving on a predefined path. Vehicle system dynamics.NoviT.LinigerA.CapitaniR. & AnnicchiaricoC. (2020). Real-time control for at-limit handling driving on a predefined path. Vehicle system dynamics.Search in Google Scholar
Wang, P., Gao, S., Li, L., Sun, B., & Cheng, S. (2019). Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm. Energies, 12(12), 2342.WangP.GaoS.LiL.SunB. & ChengS. (2019). Obstacle avoidance path planning design for autonomous driving vehicles based on an improved artificial potential field algorithm. Energies, 12(12), 2342.Search in Google Scholar
Wang, H., Liu, B., Ping, X., & An, Q. (2019). Path tracking control for autonomous vehicles based on an improved MPC. IEEE access, 7, 161064-161073.WangH.LiuB.PingX. & AnQ. (2019). Path tracking control for autonomous vehicles based on an improved MPC. IEEE access, 7, 161064-161073.Search in Google Scholar
Zhang, Y., Chen, H., Waslander, S. L., Gong, J., Xiong, G., Yang, T., & Liu, K. (2018). Hybrid trajectory planning for autonomous driving in highly constrained environments. IEEE Access, 6, 32800-32819.ZhangY.ChenH.WaslanderS. L.GongJ.XiongG.YangT. & LiuK. (2018). Hybrid trajectory planning for autonomous driving in highly constrained environments. IEEE Access, 6, 32800-32819.Search in Google Scholar
Wu, B., Qian, L., Lu, M., Qiu, D., & Liang, H. (2019). Optimal control problem of multi‐vehicle cooperative autonomous parking trajectory planning in a connected vehicle environment. IET Intelligent Transport Systems, 13(11), 1677-1685.WuB.QianL.LuM.QiuD. & LiangH. (2019). Optimal control problem of multi‐vehicle cooperative autonomous parking trajectory planning in a connected vehicle environment. IET Intelligent Transport Systems, 13(11), 1677-1685.Search in Google Scholar
Liu, C., Lee, S., Varnhagen, S., & Tseng, H. E. (2017, June). Path planning for autonomous vehicles using model predictive control. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 174-179). IEEE.LiuC.LeeS.VarnhagenS. & TsengH. E. (2017, June). Path planning for autonomous vehicles using model predictive control. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 174-179). IEEE.Search in Google Scholar
Bergman, K., & Axehill, D. (2018, June). Combining homotopy methods and numerical optimal control to solve motion planning problems. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 347-354). IEEE.BergmanK. & AxehillD. (2018, June). Combining homotopy methods and numerical optimal control to solve motion planning problems. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 347-354). IEEE.Search in Google Scholar
Huang, Z., Chu, D., Wu, C., & He, Y. (2018). Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Transactions on Intelligent Transportation Systems, 20(3), 959-974.HuangZ.ChuD.WuC. & HeY. (2018). Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Transactions on Intelligent Transportation Systems, 20(3), 959-974.Search in Google Scholar
Huang, Y., Wang, H., Khajepour, A., Ding, H., Yuan, K., & Qin, Y. (2019). A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control. IEEE Transactions on Vehicular Technology, 69(1), 55-66.HuangY.WangH.KhajepourA.DingH.YuanK. & QinY. (2019). A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control. IEEE Transactions on Vehicular Technology, 69(1), 55-66.Search in Google Scholar
Li, X., Sun, Z., Cao, D., Liu, D., & He, H. (2017). Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 87, 118-137.LiX.SunZ.CaoD.LiuD. & HeH. (2017). Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles. Mechanical Systems and Signal Processing, 87, 118-137.Search in Google Scholar
Hu, X., Chen, L., Tang, B., Cao, D., & He, H. (2018). Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles. Mechanical systems and signal processing, 100, 482-500.HuX.ChenL.TangB.CaoD. & HeH. (2018). Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles. Mechanical systems and signal processing, 100, 482-500.Search in Google Scholar
Hang, P., Lv, C., Huang, C., Cai, J., Hu, Z., & Xing, Y. (2020). An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors. IEEE transactions on vehicular technology, 69(12), 14458-14469.HangP.LvC.HuangC.CaiJ.HuZ. & XingY. (2020). An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors. IEEE transactions on vehicular technology, 69(12), 14458-14469.Search in Google Scholar
Wang, H., Huang, Y., Khajepour, A., Zhang, Y., Rasekhipour, Y., & Cao, D. (2019). Crash mitigation in motion planning for autonomous vehicles. IEEE transactions on intelligent transportation systems, 20(9), 3313-3323.WangH.HuangY.KhajepourA.ZhangY.RasekhipourY. & CaoD. (2019). Crash mitigation in motion planning for autonomous vehicles. IEEE transactions on intelligent transportation systems, 20(9), 3313-3323.Search in Google Scholar
Changmook Kang,Taehyung Lee & Jongho Shin. (2024). Abnormal Driving Area Detection Using Multiple Vehicle Dynamic Model-Based Filter: Design and Experimental Validation. Machines(8),564-564.KangChangmookLeeTaehyung & ShinJongho. (2024). Abnormal Driving Area Detection Using Multiple Vehicle Dynamic Model-Based Filter: Design and Experimental Validation. Machines(8),564-564.Search in Google Scholar
Flavio Farroni, Raffaele Lamberti, Nicolò Mancinelli & Francesco Timpone. (2018). TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig. Mechanical Systems and Signal Processing1-22.FarroniFlavioLambertiRaffaeleMancinelliNicolò & TimponeFrancesco. (2018). TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig. Mechanical Systems and Signal Processing1-22.Search in Google Scholar
Li Miao & Linhe Zhu. (2024). Parameter identification of a reaction-diffusion predator-prey system based on optimal control theory. Applied Mathematical Modelling1-19.MiaoLi & ZhuLinhe. (2024). Parameter identification of a reaction-diffusion predator-prey system based on optimal control theory. Applied Mathematical Modelling1-19.Search in Google Scholar