Monotonicity and non-monotonicity regions of topological entropy for Lorenz-like families with infinite derivatives
oraz
16 lis 2020
O artykule
Data publikacji: 16 lis 2020
Zakres stron: 293 - 306
Otrzymano: 08 sty 2020
Przyjęty: 11 kwi 2020
DOI: https://doi.org/10.2478/amns.2020.2.00052
Słowa kluczowe
© 2020 M.I. Malkin et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
![The kneading chart for map Tc,ɛ shows that the topological entropy as the function of c has a single minimum for ɛ in the interval [0,0.6] (more precise calculation gives ɛ ∈ [0,0.76]). Above the red line one has that Tc,ɛ is expanding (DTc,ɛ > 1), and there the topological entropy is monotone increasing in c.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709fc271e4585e08aa1987/j_amns.2020.2.00052_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T184930Z&X-Amz-Expires=3600&X-Amz-Signature=286f7e3fa8b986f75d6b4ed3e3f8a79f05ac2ae50a0527a2bb2c981f3d3ba111&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13
