Otwarty dostęp

Design of Convolutional Neural Network Optimization Algorithm Based on Embedded System and Its Application in Real-Time Image Processing

 oraz   
24 mar 2025

Zacytuj
Pobierz okładkę

Vasile, C. E., Ulmămei, A. A., & Bîră, C. (2024). Image Processing Hardware Acceleration—A Review of Operations Involved and Current Hardware Approaches. Journal of Imaging, 10(12), 298. VasileC. E.UlmămeiA. A. & BîrăC. (2024). Image Processing Hardware Acceleration—A Review of Operations Involved and Current Hardware Approaches. Journal of Imaging, 10(12), 298.Search in Google Scholar

Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. RodriguezM.SridharlakshmiN. R. B.BoinapalliN. R.AllamA. R. & DevarapuK. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43.Search in Google Scholar

Cococcioni, M., Rossi, F., Ruffaldi, E., & Saponara, S. (2020). Fast deep neural networks for image processing using posits and ARM scalable vector extension. Journal of Real-Time Image Processing, 17(3), 759-771. CococcioniM.RossiF.RuffaldiE. & SaponaraS. (2020). Fast deep neural networks for image processing using posits and ARM scalable vector extension. Journal of Real-Time Image Processing, 17(3), 759-771.Search in Google Scholar

Chimakurthi, V. N. S. S. (2020). Application of convolution neural network for digital image processing. Engineering International, 8(2), 149-158. ChimakurthiV. N. S. S. (2020). Application of convolution neural network for digital image processing. Engineering International, 8(2), 149-158.Search in Google Scholar

Singh, P., & Shankar, A. (2021). A novel optical image denoising technique using convolutional neural network and anisotropic diffusion for real-time surveillance applications. Journal of Real-Time Image Processing, 18(5), 1711-1728. SinghP. & ShankarA. (2021). A novel optical image denoising technique using convolutional neural network and anisotropic diffusion for real-time surveillance applications. Journal of Real-Time Image Processing, 18(5), 1711-1728.Search in Google Scholar

Sedaghat, N., & Mahabal, A. (2018). Effective image differencing with convolutional neural networks for real-time transient hunting. Monthly Notices of the Royal Astronomical Society, 476(4), 5365-5376. SedaghatN. & MahabalA. (2018). Effective image differencing with convolutional neural networks for real-time transient hunting. Monthly Notices of the Royal Astronomical Society, 476(4), 5365-5376.Search in Google Scholar

Fang, J., & Zhang, X. (2021, October). Embedded image recognition system for lightweight convolutional Neural Networks. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 1373-1377). FangJ. & ZhangX. (2021, October). Embedded image recognition system for lightweight convolutional Neural Networks. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (pp. 1373-1377).Search in Google Scholar

Gong, T., Fan, T., Guo, J., & Cai, Z. (2017). GPU-based parallel optimization of immune convolutional neural network and embedded system. Engineering Applications of Artificial Intelligence, 62, 384-395. GongT.FanT.GuoJ. & CaiZ. (2017). GPU-based parallel optimization of immune convolutional neural network and embedded system. Engineering Applications of Artificial Intelligence, 62, 384-395.Search in Google Scholar

Jaramillo-Avila, U., & Anderson, S. R. (2019, July). Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks. In Conference on Biomimetic and Biohybrid Systems (pp. 193-204). Cham: Springer International Publishing. Jaramillo-AvilaU. & AndersonS. R. (2019, July). Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks. In Conference on Biomimetic and Biohybrid Systems (pp. 193-204). Cham: Springer International Publishing.Search in Google Scholar

Silva, C. F., & Siebra, C. A. (2017, November). An investigation on the use of convolutional neural network for image classification in embedded systems. In 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1-6). IEEE. SilvaC. F. & SiebraC. A. (2017, November). An investigation on the use of convolutional neural network for image classification in embedded systems. In 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1-6). IEEE.Search in Google Scholar

Alippi, C., Disabato, S., & Roveri, M. (2018, April). Moving convolutional neural networks to embedded systems: the alexnet and VGG-16 case. In 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (pp. 212-223). IEEE. AlippiC.DisabatoS. & RoveriM. (2018, April). Moving convolutional neural networks to embedded systems: the alexnet and VGG-16 case. In 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN) (pp. 212-223). IEEE.Search in Google Scholar

Monteiro, A., De Oliveira, M., De Oliveira, R., & Da Silva, T. (2018). Embedded application of convolutional neural networks on Raspberry Pi for SHM. Electronics Letters, 54(11), 680-682. MonteiroA.De OliveiraM.De OliveiraR. & Da SilvaT. (2018). Embedded application of convolutional neural networks on Raspberry Pi for SHM. Electronics Letters, 54(11), 680-682.Search in Google Scholar

Verhelst, M., & Moons, B. (2017). Embedded deep neural network processing: Algorithmic and processor techniques bring deep learning to iot and edge devices. IEEE Solid-State Circuits Magazine, 9(4), 55-65. VerhelstM. & MoonsB. (2017). Embedded deep neural network processing: Algorithmic and processor techniques bring deep learning to iot and edge devices. IEEE Solid-State Circuits Magazine, 9(4), 55-65.Search in Google Scholar

Zhao, M., Hu, C., Wei, F., Wang, K., Wang, C., & Jiang, Y. (2019). Real-time underwater image recognition with FPGA embedded system for convolutional neural network. Sensors, 19(2), 350. ZhaoM.HuC.WeiF.WangK.WangC. & JiangY. (2019). Real-time underwater image recognition with FPGA embedded system for convolutional neural network. Sensors, 19(2), 350.Search in Google Scholar

Xiang, L., Wang, Q., Nie, D., Zhang, L., Jin, X., Qiao, Y., & Shen, D. (2018). Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical image analysis, 47, 31-44. XiangL.WangQ.NieD.ZhangL.JinX.QiaoY. & ShenD. (2018). Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Medical image analysis, 47, 31-44.Search in Google Scholar

Goel, A., Aghajanzadeh, S., Tung, C., Chen, S. H., Thiruvathukal, G. K., & Lu, Y. H. (2020). Modular neural networks for low-power image classification on embedded devices. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(1), 1-35. GoelA.AghajanzadehS.TungC.ChenS. H.ThiruvathukalG. K. & LuY. H. (2020). Modular neural networks for low-power image classification on embedded devices. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26(1), 1-35.Search in Google Scholar

Caesarendra, W., Hishamuddin, T. A., Lai, D. T. C., Husaini, A., Nurhasanah, L., Glowacz, A., & Alfarisy, G. A. F. (2022). An embedded system using convolutional neural network model for online and real-time ECG signal classification and prediction. Diagnostics, 12(4), 795. CaesarendraW.HishamuddinT. A.LaiD. T. C.HusainiA.NurhasanahL.GlowaczA. & AlfarisyG. A. F. (2022). An embedded system using convolutional neural network model for online and real-time ECG signal classification and prediction. Diagnostics, 12(4), 795.Search in Google Scholar

Tripathi, S., Kang, B., Dane, G., & Nguyen, T. (2017, September). Low-complexity object detection with deep convolutional neural network for embedded systems. In Applications of Digital Image Processing XL (Vol. 10396, pp. 317-331). SPIE. TripathiS.KangB.DaneG. & NguyenT. (2017, September). Low-complexity object detection with deep convolutional neural network for embedded systems. In Applications of Digital Image Processing XL (Vol. 10396, pp. 317-331). SPIE.Search in Google Scholar

Erofei, A. A., Druţa, C. F., & Căleanu, C. D. (2018, May). Embedded solutions for deep neural networks implementation. In 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI) (pp. 000425-000430). IEEE. ErofeiA. A.DruţaC. F. & CăleanuC. D. (2018, May). Embedded solutions for deep neural networks implementation. In 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI) (pp. 000425-000430). IEEE.Search in Google Scholar

Abtahi, T., Shea, C., Kulkarni, A., & Mohsenin, T. (2018). Accelerating convolutional neural network with FFT on embedded hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(9), 1737-1749. AbtahiT.SheaC.KulkarniA. & MohseninT. (2018). Accelerating convolutional neural network with FFT on embedded hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(9), 1737-1749.Search in Google Scholar

Shea, C., Page, A., & Mohsenin, T. (2018, May). SCALENet: a scalable low power accelerator for real-time embedded deep neural networks. In Proceedings of the 2018 on Great Lakes Symposium on VLSI (pp. 129-134). SheaC.PageA. & MohseninT. (2018, May). SCALENet: a scalable low power accelerator for real-time embedded deep neural networks. In Proceedings of the 2018 on Great Lakes Symposium on VLSI (pp. 129-134).Search in Google Scholar

Udendhran, R., Balamurugan, M., Suresh, A., & Varatharajan, R. (2020). Enhancing image processing architecture using deep learning for embedded vision systems. Microprocessors and Microsystems, 76, 103094. UdendhranR.BalamuruganM.SureshA. & VaratharajanR. (2020). Enhancing image processing architecture using deep learning for embedded vision systems. Microprocessors and Microsystems, 76, 103094.Search in Google Scholar

Wang, X., Zhang, W., Wu, X., Xiao, L., Qian, Y., & Fang, Z. (2019). Real-time vehicle type classification with deep convolutional neural networks. Journal of Real-Time Image Processing, 16, 5-14. WangX.ZhangW.WuX.XiaoL.QianY. & FangZ. (2019). Real-time vehicle type classification with deep convolutional neural networks. Journal of Real-Time Image Processing, 16, 5-14.Search in Google Scholar

Hedegaard, L., & Iosifidis, A. (2022, October). Continual 3D convolutional neural networks for real-time processing of videos. In European Conference on Computer Vision (pp. 369-385). Cham: Springer Nature Switzerland. HedegaardL. & IosifidisA. (2022, October). Continual 3D convolutional neural networks for real-time processing of videos. In European Conference on Computer Vision (pp. 369-385). Cham: Springer Nature Switzerland.Search in Google Scholar

Harb, S., Ahmad, M. O., & Swamy, M. N. S. (2023). An efficient image steganographic scheme for a real-time embedded system and its hardware implementation on AMD Xilinx Zynq-7000 APSoC platform. Journal of Real-Time Image Processing, 20(3), 46. HarbS.AhmadM. O. & SwamyM. N. S. (2023). An efficient image steganographic scheme for a real-time embedded system and its hardware implementation on AMD Xilinx Zynq-7000 APSoC platform. Journal of Real-Time Image Processing, 20(3), 46.Search in Google Scholar

Kim, J., Kim, S., Oh, S., & Jeon, M. (2024, September). AI-based content-aware encoding at scale utilizing hardware resources in video ASICs for data center. In Applications of Digital Image Processing XLVII (Vol. 13137, pp. 329-340). SPIE. KimJ.KimS.OhS. & JeonM. (2024, September). AI-based content-aware encoding at scale utilizing hardware resources in video ASICs for data center. In Applications of Digital Image Processing XLVII (Vol. 13137, pp. 329-340). SPIE.Search in Google Scholar

Strempfer, S., Zhou, T., Yoshii, K., Hammer, M., Babu, A., Bycul, D., ... & Miceli, A. (2022). A lightweight, user-configurable detector ASIC digital architecture with on-chip data compression for MHz X-ray coherent diffraction imaging. Journal of Instrumentation, 17(10), P10042. StrempferS.ZhouT.YoshiiK.HammerM.BabuA.ByculD. ... & MiceliA. (2022). A lightweight, user-configurable detector ASIC digital architecture with on-chip data compression for MHz X-ray coherent diffraction imaging. Journal of Instrumentation, 17(10), P10042.Search in Google Scholar

Pedre, S., Krajník, T., Todorovich, E., & Borensztejn, P. (2016). Accelerating embedded image processing for real time: a case study. Journal of Real-Time Image Processing, 11(2), 349-374. PedreS.KrajníkT.TodorovichE. & BorensztejnP. (2016). Accelerating embedded image processing for real time: a case study. Journal of Real-Time Image Processing, 11(2), 349-374.Search in Google Scholar

Kaur, A. (2018, November). A Survey on FPGA Implementations in Embedded Augmented Reality Applications. In 2018 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON) (pp. 23-26). IEEE. KaurA. (2018, November). A Survey on FPGA Implementations in Embedded Augmented Reality Applications. In 2018 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON) (pp. 23-26). IEEE.Search in Google Scholar

Hussain, S. M., Farrukh, F. U. D., Su, S., Wang, Z., & Chen, H. (2019). CMOS image sensor design and image processing algorithm implementation for total hip arthroplasty surgery. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1383-1392. HussainS. M.FarrukhF. U. D.SuS.WangZ. & ChenH. (2019). CMOS image sensor design and image processing algorithm implementation for total hip arthroplasty surgery. IEEE Transactions on Biomedical Circuits and Systems, 13(6), 1383-1392.Search in Google Scholar

Siddiqui, F., Amiri, S., Minhas, U. I., Deng, T., Woods, R., Rafferty, K., & Crookes, D. (2019). FPGA-based processor acceleration for image processing applications. Journal of Imaging, 5(1), 16. SiddiquiF.AmiriS.MinhasU. I.DengT.WoodsR.RaffertyK. & CrookesD. (2019). FPGA-based processor acceleration for image processing applications. Journal of Imaging, 5(1), 16.Search in Google Scholar

Meribout, M., Baobaid, A., Khaoua, M. O., Tiwari, V. K., & Pena, J. P. (2022). State of art IoT and Edge embedded systems for real-time machine vision applications. IEEE Access, 10, 58287-58301. MeriboutM.BaobaidA.KhaouaM. O.TiwariV. K. & PenaJ. P. (2022). State of art IoT and Edge embedded systems for real-time machine vision applications. IEEE Access, 10, 58287-58301.Search in Google Scholar

Yang, T., Xu, Q., Meng, F., & Zhang, S. (2022). Distributed real-time image processing of formation flying SAR based on embedded GPUs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6495-6505. YangT.XuQ.MengF. & ZhangS. (2022). Distributed real-time image processing of formation flying SAR based on embedded GPUs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6495-6505.Search in Google Scholar

Romera, T., Petreto, A., Lemaitre, F., Bouyer, M., Meunier, Q., & Lacassagne, L. (2021, August). Implementations impact on iterative image processing for embedded GPU. In 2021 29th European Signal Processing Conference (EUSIPCO) (pp. 736-740). IEEE. RomeraT.PetretoA.LemaitreF.BouyerM.MeunierQ. & LacassagneL. (2021, August). Implementations impact on iterative image processing for embedded GPU. In 2021 29th European Signal Processing Conference (EUSIPCO) (pp. 736-740). IEEE.Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne