A study on the impact of high-quality openness on China’s economic growth based on mathematical statistics
24 mar 2025
O artykule
Data publikacji: 24 mar 2025
Otrzymano: 10 paź 2024
Przyjęty: 03 lut 2025
DOI: https://doi.org/10.2478/amns-2025-0726
Słowa kluczowe
© 2025 Jie Gao, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Cointegral regression
| Variable | Coefficient | Std.Error | t-Statistic | Prob. |
|---|---|---|---|---|
| LGF | 0.48532 | 0.18846 | 2.57513 | 0.0231 |
| C | 12.0038 | 0.23800 | 50.43528 | 0.000 |
| R-squared | 0.17327 | Mean dependent var | 11.2052 | |
| Adjusted R-squared | 0.10968 | S.D. dependent var | 0.39771 | |
| S.E. of regression | 0.37527 | Akaike info criterion | 1.0012 | |
| Sum squared resid | 1.83081 | Schwarz criterion | 1.09566 | |
| Log likelihood | -5.50939 | Hannan-Quinn criter. | 1.00025 | |
| F-statistic | 2.72467 | Durbin-Watson stat | 0.27875 | |
| Prob(Wald F-stat.) | 0.02307 | Wald F-statistic | 6.63132 | |
ADF test results
| Augmented Dickey-Fuller test statistic | -3.522055 | |
|---|---|---|
| Test critical values | 1% level | -2.937216 |
| 5% level | -2.006292 | |
| 10% level | -1.598068 | |
Granger causality test results
| Null Hypothesis | Lag | F-Statistic | Probability |
|---|---|---|---|
| LGX1 does not Granger Cause LGGDP | 1 | 6.12443 | 0.02121 |
| LGGDP does not Granger Cause LGX1 | 0.92121 | 0.34241 | |
| LGX2 does not Granger Cause LGGDP | 1 | 9.45274 | 0.01242 |
| LGGDP does not Granger Cause LGX2 | 1.24537 | 0.12112 | |
| LGX3 does not Granger Cause LGGDP | 1 | 6.45276 | 0.00152 |
| LGGDP does not Granger Cause LGX3 | 0.45769 | 0.24241 | |
| LGX4 does not Granger Cause LGGDP | 3 | 5.12445 | 0.01424 |
| LGGDP does not Granger Cause LGX4 | 0.24207 | 0.34214 | |
| LGX5 does not Granger Cause LGGDP | 4 | 4.27524 | 0.00124 |
| LGGDP does not Granger Cause LGX5 | 3.21452 | 0.96113 | |
| LGX6 does not Granger Cause LGGDP | 2 | 1.24577 | 0.31421 |
| LGGDP does not Granger Cause LGX6 | 9.21425 | 0.01042 | |
| LGX7 does not Granger Cause LGGDP | 1 | 6.45272 | 0.00142 |
| LGGDP does not Granger Cause LGX7 | 0.45272 | 0.96341 | |
| LGF does not Granger Cause LGGDP | 1 | 6.45212 | 0.01422 |
| LGGDP does not Granger Cause LGF | 0.45274 | 0.24242 |
Johansen cointegral test results
| Cointegral equation number r | Eigenvalue | Maximum eigenvalue statistics | 5% threshold | P |
|---|---|---|---|---|
| r=0* | 0.92128 | 89.2115 | 56.91319 | 0.000 |
| r≤1 | 0.64216 | 48.3277 | 50.51985 | 0.0482 |
| r≤2 | 0.87724 | 43.3356 | 44.3252 | 0.0988 |
| r≤3 | 0.78896 | 33.1036 | 38.33901 | 0.0855 |
| r≤4 | 0.59069 | 20.5844 | 31.85932 | 0.6561 |
| r≤5 | 0.23903 | 14.7914 | 25.72421 | 0.7874 |
| r≤6 | 0.41487 | 11.7042 | 19.38704 | 0.5705 |
| r≤7 | 0.20406 | 8.7398 | 12.36498 | 0.2707 |
Normalized cointegral coefficient
| LGX1 | LGX2 | LGX3 | LGX4 |
|---|---|---|---|
| 0.13124 | 0.35014 | 0.34631 | 0.05896 |
| (0.05552) | (0.04324) | (0.02124) | (0.02639) |
| LGX5 | LGX6 | LGX7 | @TREND(83) |
| 0.17763 | 0.17365 | 0.09836 | -0.05125 |
| (0.03247) | (0.11469) | (0.02368) | (0.00247) |
The ADF unit root test results of each sequence
| Variable sequence | Test form(C,T,P) | ADF statistics scale | Critical value | Conclusion | D.W. |
|---|---|---|---|---|---|
| LGGDP | (C,T,1) | -2.98648 | -4.80008* | Nonstationary | 2.34484 |
| ΔLGGDP | (0,0,1) | -2.02126 | -1.97403** | Smoothness | 2.04473 |
| Δ2LGGDP | (C,0,3) | -3.40168 | -4.20006** | Smoothness | 2.28614 |
| LGX1 | (C,T,1) | -0.9395 | -1.55929 | Nonstationary | 1.7654 |
| ΔLGX1 | (C,T,3) | -1.09311 | -0.9288 | Smoothness | 1.5562 |
| Δ2LGX1 | (C,0,1) | -3.5074 | -2.67972* | Smoothness | 1.1445 |
| LGX2 | (C,T,2) | -1.6916 | -1.96996 | Nonstationary | 2.1460 |
| ΔLGX2 | (C,T,1) | -5.3569 | -1.30137 | Smoothness | 2.0217 |
| Δ2LGX2 | (C,0,1) | -1.8197 | -1.5774* | Smoothness | 2.4514 |
| LGX3 | (C,T,1) | -1.3057 | -2.2505 | Nonstationary | 1.1004 |
| ΔLGX3 | (C,T,1) | -4.2750 | -1.80002** | Smoothness | 1.2190 |
| Δ2LGX3 | (C,0,2) | -3.5694 | -2.01820* | Smoothness | 2.1344 |
| LGX4 | (C,T,1) | -2.39821 | -2.7835 | Nonstationary | 1.6706 |
| ΔLGX4 | (C,0,2) | -4.9464 | -2.36258 | Smoothness | 1.9841 |
| Δ2LGX4 | (C,0,3) | -4.5375 | -1.08882* | Smoothness | 2.1371 |
| LGX5 | (C,T,3) | -1.6940 | -2.663492 | Nonstationary | 1.7365 |
| ΔLGX5 | (C,0,3) | -3.6487 | -3.2392 | Smoothness | 2.1010 |
| Δ2LGX5 | (C,T,2) | -1.6505 | -1.24112* | Smoothness | 2.3626 |
| LGX6 | (C,T,4) | -1.60087 | -2.6803 | Nonstationary | 2.4485 |
| ΔLGX6 | (C,0,2) | -5.2887 | -3.87252 | Smoothness | 2.1179 |
| Δ2LGX6 | (0,0,2) | -5.7717 | -2.92894* | Smoothness | 1.8703 |
| LGX7 | (C,T,1) | -1.2945 | -1.53773 | Nonstationary | 1.6597 |
| ΔLGX7 | (C,T,2) | -4.1444 | -2.18508 | Smoothness | 1.4867 |
| Δ2LGX7 | (C,T,1) | -3.18580 | -2.5688* | Smoothness | 1.1500 |
| LGF | (C,T,1) | -3.26705 | -4.88643* | Nonstationary | 2.1357 |
| ΔLGF | (0,0,3) | -3.09799 | -2.77192* | Smoothness | 2.1357 |
| Δ2LGF | (C,0,3) | -3.71321 | -3.14492** | Smoothness | 1.9910 |
