Otwarty dostęp

Modern methods for solving partial differential equations of parabolic type and their mathematical theoretical foundations

  
09 paź 2024

Zacytuj
Pobierz okładkę

Han, J., & Jentzen, A. (2017). Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in mathematics and statistics, 5(4), 349-380. Search in Google Scholar

Kravchenko, V. V., Otero, J. A., & Torba, S. M. (2017). Analytic approximation of solutions of parabolic partial differential equations with variable coefficients. Advances in Mathematical Physics, 2017(1), 2947275. Search in Google Scholar

Das, P. (2018). A higher order difference method for singularly perturbed parabolic partial differential equations. Journal of Difference Equations and Applications, 24(3), 452-477. Search in Google Scholar

Das, A., & Natesan, S. (2018). Second-order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equations. International Journal of Computer Mathematics, 95(3), 490-510. Search in Google Scholar

Arora, G., & Joshi, V. (2018). A computational approach for solution of one dimensional parabolic partial differential equation with application in biological processes. Ain Shams Engineering Journal, 9(4), 1141-1150. Search in Google Scholar

Garabedian, P. R. (2023). Partial differential equations (Vol. 325). American Mathematical Society. Search in Google Scholar

Nadeem, M., Li, F., & Ahmad, H. (2019). Modified Laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients. Computers & Mathematics with Applications, 78(6), 2052-2062. Search in Google Scholar

Salama, A. A., & Al-Amery, D. G. (2017). A higher order uniformly convergent method for singularly perturbed delay parabolic partial differential equations. International Journal of Computer Mathematics, 94(12), 2520-2546. Search in Google Scholar

Hutzenthaler, M., Jentzen, A., Kruse, T., Anh Nguyen, T., & von Wurstemberger, P. (2020). Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proceedings of the Royal Society A, 476(2244), 20190630. Search in Google Scholar

John, F. (2023). Partial differential equations. Springer Nature. Search in Google Scholar

Govindarao, L., & Mohapatra, J. (2020). Numerical analysis and simulation of delay parabolic partial differential equation involving a small parameter. Engineering Computations, 37(1), 289-312. Search in Google Scholar

Beck, C., Hutzenthaler, M., & Jentzen, A. (2021). On nonlinear Feynman-Kac formulas for viscosity solutions of semilinear parabolic partial differential equations. Stochastics and Dynamics, 21(08), 2150048. Search in Google Scholar

Zhang, Z., Song, X., Sun, X., & Stojanovic, V. (2023). Hybrid-driven-based fuzzy secure filtering for nonlinear parabolic partial differential equation systems with cyber attacks. International Journal of Adaptive Control and Signal Processing, 37(2), 380-398. Search in Google Scholar

Reinhardt, C., & James, J. M. (2019). Fourier-Taylor parameterization of unstable manifolds for parabolic partial differential equations: formalism, implementation and rigorous validation. Indagationes Mathematicae, 30(1), 39-80. Search in Google Scholar

Bleecker, D. (2018). Basic partial differential equations. Chapman and Hall/CRC. Search in Google Scholar

Abdulla-Al-Mamun, M. S. A., & Miah, M. M. (2018). A study on an analytic solution 1D heat equation of a parabolic partial differential equation and implement in computer programming. International Journal of Scientific & Engineering Research, 9. Search in Google Scholar

Gowrisankar, S., & Natesan, S. (2017). Uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. International Journal of Computer Mathematics, 94(5), 902-921. Search in Google Scholar

Luo, W. H., Huang, T. Z., Gu, X. M., & Liu, Y. (2017). Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations. Applied Mathematics Letters, 68, 13-19. Search in Google Scholar

Mirzaee, F., & Alipour, S. (2019). Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions. Numerical Methods for Partial Differential Equations, 35(3), 1134-1151. Search in Google Scholar

Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of computational physics, 375, 1339-1364. Search in Google Scholar

Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505-8510. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne