This work is licensed under the Creative Commons Attribution 4.0 International License.
Leon, R. L., Ortigoza, E. B., Ali, N., Angelis, D., Wolovits, J. S., & Chalak, L. F. (2022). Cerebral blood flow monitoring in high-risk fetal and neonatal populations. Frontiers in Pediatrics, 9, 748345.Search in Google Scholar
Laher, A. E., Watermeyer, M. J., Buchanan, S. K., Dippenaar, N., Simo, N. C. T., Motara, F., & Moolla, M. (2017). A review of hemodynamic monitoring techniques, methods and devices for the emergency physician. The American journal of emergency medicine, 35(9), 1335-1347.Search in Google Scholar
Tahhan, N., Balanca, B., Fierstra, J., Waelchli, T., Picart, T., Dumot, C., ... & Berhouma, M. (2022). Intraoperative cerebral blood flow monitoring in neurosurgery: A review of contemporary technologies and emerging perspectives. Neurochirurgie, 68(4), 414-425.Search in Google Scholar
Morgan, A. G., Thrippleton, M. J., Wardlaw, J. M., & Marshall, I. (2021). 4D flow MRI for non-invasive measurement of blood flow in the brain: a systematic review. Journal of Cerebral Blood Flow & Metabolism, 41(2), 206-218.Search in Google Scholar
Zhou, Y., Dong, Y., Hou, F., & Wu, J. (2022). Review on millimeter-wave radar and camera fusion technology. Sustainability, 14(9), 5114.Search in Google Scholar
Pearce, A., Zhang, J. A., Xu, R., & Wu, K. (2023). Multi-object tracking with mmwave radar: A review. Electronics, 12(2), 308.Search in Google Scholar
Bhutani, A., Marahrens, S., Kretschmann, M., Ayhan, S., Scherr, S., Göttel, B., ... & Zwick, T. (2022). Applications of radar measurement technology using 24 GHz, 61 GHz, 80 GHz and 122 GHz FMCW radar sensors. tm-Technisches Messen, 89(2), 107-121.Search in Google Scholar
Rastegar, S., GholamHosseini, H., & Lowe, A. (2020). Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges. Physical and Engineering Sciences in Medicine, 43, 11-28.Search in Google Scholar
Revzin, M. V., Imanzadeh, A., Menias, C., Pourjabbar, S., Mustafa, A., Nezami, N., ... & Pellerito, J. S. (2019). Optimizing image quality when evaluating blood flow at Doppler US: a tutorial. Radiographics, 39(5), 1501-1523.Search in Google Scholar
Asgari, S., Canac, N., Hamilton, R., & Scalzo, F. (2019). Identification of pulse onset on cerebral blood flow velocity waveforms: A comparative study. BioMed research international, 2019(1), 3252178.Search in Google Scholar
Mynard, J. P., Kondiboyina, A., Kowalski, R., Cheung, M. M., & Smolich, J. J. (2020). Measurement, analysis and interpretation of pressure/flow waves in blood vessels. Frontiers in Physiology, 11, 1085.Search in Google Scholar
Jha, U. S. (2018). The millimeter Wave (mmW) radar characterization, testing, verification challenges and opportunities. 2018 IEEE AUTOTESTCON, 1-5.Search in Google Scholar
Zhang, J., Xi, R., He, Y., Sun, Y., Guo, X., Wang, W., ... & Gu, T. (2023). A survey of mmWave-based human sensing: Technology, platforms and applications. IEEE Communications Surveys & Tutorials.Search in Google Scholar
Zichao Shen,Jose Nunez Yanez & Naim Dahnoun.(2024).Advanced Millimeter-Wave Radar System for Real-Time Multiple-Human Tracking and Fall Detection.Sensors(11),Search in Google Scholar
Dhanasekar S.(2024).An area efficient vedic multiplier for FFT processor implementation using 4-2 compressor adder.International Journal of Electronics(6),935-951.Search in Google Scholar
Ott Olivia,Tolppi Sabrina,Figueroa Cruz Jennifer,Myagmar Khaliun,Unurbuyan Khulan & Tripathi Anubhav.(2024).Leveraging the fundamentals of heat transfer and fluid mechanics in microscale geometries for automated next-generation sequencing library preparation.Scientific Reports(1),12564-12564.Search in Google Scholar