Otwarty dostęp

New and Modified Eccentric Indices of Octagonal Grid Omn

, ,  oraz   
03 paź 2018

Zacytuj
Pobierz okładkę

Fig. 1

The Octagonal grid
Onm$\begin{array}{}
\displaystyle
O_n^m
\end{array}$.
The Octagonal grid Onm$\begin{array}{} \displaystyle O_n^m \end{array}$.

Partition of vertices of the type ust  of  Onm$\begin{array}{} \displaystyle u_s^t~~ \text{of}~~ O_n^m \end{array}$ based on degree sum and eccentricity of each vertex when n ≡ 1(mod 2)_

RepresentativeSust$\begin{array}{} \displaystyle S_{u_s^t} \end{array}$eccentricityRangeFrequency
ust$\begin{array}{} \displaystyle u_s^t \end{array}$44ns + 1t = 1, n + 1; s = 12
ust$\begin{array}{} \displaystyle u_s^t \end{array}$54ns + 1t = 1, n + 1,n − 1
2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$53n + s − 1t = 1, n + 1,n − 1
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$74n − 3(s − 1) − t1 = s,(n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1)
2 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94n − 3(s − 1) − t2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1,n34(n+121)$\begin{array}{} \displaystyle \frac{ n-3}{4}(\,\,\, \frac{n+1}{2}-1\,\,) \end{array}$
s + 1 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94(n + 1) − s − 3t2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$,n+14(n+121)$\begin{array}{} \displaystyle \frac{ n+1}{4}(\,\,\, \frac{ n+1}{2}-1\,\,) \end{array}$
2 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$93n + s − 3t + 2n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn − 1,n14(n121)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n-1}{2}-1\,\,) \end{array}$
2 ≤ tn + 1 − s
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9n + 3st − 1n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn,n14(n12+1)$\begin{array}{} \displaystyle \frac{n-1}{4}(\,\,\, \frac{n-1}{2}+1\,\,) \end{array}$
ns + 2 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$73(ns) + t + 1s = 1,(n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1)
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9ns + 3t − 22 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$,n34(n+121)$\begin{array}{} \displaystyle \frac{ n-3}{4}(\,\,\, \frac{n+1}{2}-1\,\,) \end{array}$
ns + 2 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94sn + t − 3n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn,n14(n+12)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n+1}{2}\,\,) \end{array}$
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9s + 3t − 4n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn − 1,n14(n121)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n-1}{2}-1\,\,) \end{array}$
s + 1 ≤ tn

Partition of vertices of the type ust  of  Onm$\begin{array}{} \displaystyle u_s^t~~ \text{of}~~ O_n^m \end{array}$ based on degree product and eccentricity of each vertex when n ≡ 1( mod 2)_

RepresentativeMust$\begin{array}{} \displaystyle M_{u_s^t} \end{array}$eccentricityRangeFrequency
ust$\begin{array}{} \displaystyle u_s^t \end{array}$44ns + 1t = 1, n + 1; s = 12
ust$\begin{array}{} \displaystyle u_s^t \end{array}$64ns + 1t = 1, n + 1,n − 1
2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$63n + s − 1t = 1, n + 1,n − 1
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$124n − 3(s − 1) − t1 = s,(n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1)
2 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274n − 3(s − 1) − t2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1,n34(n+121)$\begin{array}{} \displaystyle \frac{ n-3}{4}(\,\,\, \frac{n+1}{2}-1\,\,) \end{array}$
s + 1 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274(n + 1) − s − 3t2 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$,n+14(n+121)$\begin{array}{} \displaystyle \frac{ n+1}{4}(\,\,\, \frac{ n+1}{2}-1\,\,) \end{array}$
2 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$273n + s − 3t + 2n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn − 1,n14(n121)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n-1}{2}-1\,\,) \end{array}$
2 ≤ tn + 1 − s
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27n + 3st − 1n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn,n14(n12+1)$\begin{array}{} \displaystyle \frac{n-1}{4}(\,\,\, \frac{n-1}{2}+1\,\,) \end{array}$
ns + 2 ≤ tn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$
ust$\begin{array}{} \displaystyle u_s^t \end{array}$123(ns) + t + 1s = 1,(  n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ − 1)
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27ns + 3t − 22 ≤ sn+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$,n34(n+121)$\begin{array}{} \displaystyle \frac{ n-3}{4}(\,\,\, \frac{n+1}{2}-1\,\,) \end{array}$
ns + 2 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274sn + t − 3n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn,n14(n+12)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n+1}{2}\,\,) \end{array}$
n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27s + 3t − 4n+12$\begin{array}{} \displaystyle \frac{n+1}{2} \end{array}$ + 1 ≤ sn − 1,n14(n121)$\begin{array}{} \displaystyle \frac{ n-1}{4}(\,\,\, \frac{ n-1}{2}-1\,\,) \end{array}$
s + 1 ≤ tn

Comparison of the discriminating power and degeneracy of eccentric connectivity index, modified eccentric connectivity index and modified augmented eccentric connectivity index using all possible structures with three and four vertices_

ξ(G)MAξc(G)ξc(G)
• For three vertices
Minimum value6910
Maximum value61212
Ratio1:11:1.341:1.2
Degeneracy1/20/20/2
• For four vertices
Minimum value91621
Maximum value1610836
Ratio1:1.781:6.751:1.7
Degeneracy1/61/61/6

Partition of vertices of the type ust  of  Onm$\begin{array}{} \displaystyle u_s^t~~ \text{of}~~ O_n^m \end{array}$ based on degree sum and eccentricity of each vertex when n ≡ 0( mod 2)_

RepresentativeSust$\begin{array}{} \displaystyle S_{u_s^t} \end{array}$eccentricityRangeFrequency
ust$\begin{array}{} \displaystyle u_s^t \end{array}$44n - s + 1t = 1, n + 1; s = 12
ust$\begin{array}{} \displaystyle u_s^t \end{array}$54ns + 1t = 1, n + 1,n
2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$53n + s − 1t = 1, n + 1,n − 2
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ sn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$74n − 3(s − 1) − ts = 1,n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$
2 ≤ tn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94n − 3(s − 1) − t2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n283n4$\begin{array}{} \displaystyle \frac{n^2}{8}-\frac{3n}{4} \end{array}$
s + 1 ≤ tn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94(n + 1) − s − 3t2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
2 ≤ ts
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$93n + s − 3t + 2n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn − 1,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
2 ≤ tn + 1 − s
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9n + 3st − 1n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
ns + 2 ≤ tn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$73(ns) + t + 1s = 1,n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ − 1
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ tn
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$93(ns) + t + 12 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ − 1,18$\begin{array}{} \displaystyle \frac{1}{8} \end{array}$(n − 4)(n − 2)
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ tns + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9ns + 3t − 22 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
ns + 2 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$94sn + t − 3n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ sn,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$9s + 3t − 4n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn − 1,n28n4$\begin{array}{} \displaystyle \frac{n^2}{8}- \frac{ n}{4} \end{array}$
s + 1 ≤ tn

Values of eccentric connectivity index, modified eccentric connectivity index and modified augmented eccentric connectivity index for all possible structures with three and four_

S.NStructureξ(G)MAξc(G)ξc(G)
1

6910
2

61212
3

141624
4

91921
5

133232
6

163232
7

146029
8

1210836

comparison of ξc(Omn), Eξc(Omn) and MAξc(Omn) for Omn,$\begin{array}{} \displaystyle \xi_c(O_m^n), ~ ^E\xi^c(O_m^n)~\text{and}~ ^{MA}\xi^c(O_m^n)~\text{for}~ O_m^n, \end{array}$ when m = n_

[n, m]ξc(Onm$\begin{array}{} \displaystyle O_n^m \end{array}$)Eξc(Onm$\begin{array}{} \displaystyle O_n^m \end{array}$)MAξc(Onm$\begin{array}{} \displaystyle O_n^m \end{array}$)
[3, 3]28885369165$\begin{array}{} \displaystyle \cfrac{5369}{165} \end{array}$5880
[4, 4]656461603915015$\begin{array}{} \displaystyle \cfrac{616039}{15015} \end{array}$14456
[5, 5]13460746094621322685$\begin{array}{} \displaystyle \cfrac{74609462}{1322685} \end{array}$32260
[6, 6]229725635138788580495$\begin{array}{} \displaystyle \cfrac{563513878}{8580495} \end{array}$56868
[7, 7]3728080347162079310039179150$\begin{array}{} \displaystyle \cfrac{803471620793}{10039179150} \end{array}$95576
[8, 8]55364136116588596915168440430$\begin{array}{} \displaystyle \cfrac{1361165885969}{15168440430} \end{array}$144424
[9, 9]79784192924672636118627909300$\begin{array}{} \displaystyle \cfrac{1929246726361}{18627909300} \end{array}$212136
[10, 10]109176114903717662028710119188365650$\begin{array}{} \displaystyle \cfrac{1149037176620287}{10119188365650} \end{array}$293432

Partition of vertices of the type ust  of  Onm$\begin{array}{} \displaystyle u_s^t~~ \text{of}~~ O_n^m \end{array}$ based on degree product and eccentricity of each vertex when n ≡ 0( mod 2)_

RepresentativeMust$\begin{array}{} \displaystyle M_{u_s^t} \end{array}$eccentricityRangeFrequency
ust$\begin{array}{} \displaystyle u_s^t \end{array}$44ns + 1t = 1, n + 1; s = 12
ust$\begin{array}{} \displaystyle u_s^t \end{array}$64ns + 1t = 1, n + 1,n
2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$63n + s − 1t = 1, n + 1,n − 2
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ sn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$124n − 3(s − 1) − ts = 1,n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$
2 ≤ tn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274n − 3(s − 1) − t2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n283n4$\begin{array}{} \displaystyle \frac{n^2}{8}-\frac{3n}{4} \end{array}$
s + 1 ≤ tust$\begin{array}{} \displaystyle u_s^t \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274(n + 1) − s − 3t2 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n4(n21)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}-1\,\,) \end{array}$
2 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$273n + s − 3t + 2n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn − 1,n4(n21)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}-1\,\,) \end{array}$
2 ≤ tn + 1 − s
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27n + 3st − 1n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn,n4(n2+1)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}+1\,\,) \end{array}$
ns + 2 ≤ tn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$123(ns) + t + 1s = 1,n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ − 1
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$273(ns) + t + 12 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ − 1,18$\begin{array}{} \displaystyle \frac{1}{8} \end{array}$(n − 4)(n − 2)
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ t ≤ n-s + 1
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27ns + 3t − 22 ≤ sn2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$,n4(n21)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}-1\,\,) \end{array}$
ns + 2 ≤ tn
ust$\begin{array}{} \displaystyle u_s^t \end{array}$274sn + t − 3n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ sn,n4(n21)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}-1\,\,) \end{array}$
n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 2 ≤ ts
ust$\begin{array}{} \displaystyle u_s^t \end{array}$27s + 3t − 4n2$\begin{array}{} \displaystyle \frac{n}{2} \end{array}$ + 1 ≤ sn − 1,n4(n21)$\begin{array}{} \displaystyle \frac{n}{4}(\,\,\, \frac{ n}{2}-1\,\,) \end{array}$
s + 1 ≤ tn
Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauki biologiczne, inne, Matematyka, Matematyka stosowana, Matematyka ogólna, Fizyka, Fizyka, inne