O artykule
Data publikacji: 01 paź 2016
Zakres stron: 405 - 422
Otrzymano: 15 maj 2016
Przyjęty: 01 paź 2016
DOI: https://doi.org/10.21042/AMNS.2016.2.00035
Słowa kluczowe
© 2016 Arturo Álvarez-Arenas, Juan Belmonte-Beitia, and Gabriel F. Calvo, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
We present an analysis of a mathematical model describing the key features of the most frequent and aggressive type of primary brain tumor: glioblastoma. The model captures the salient physiopathological characteristics of this type of tumor: invasion of the normal brain tissue, cell proliferation and the formation of a necrotic core. Our study, based on phase space analysis, geometric perturbation theory, exact solutions and numerical simulations, proves the existence of bright solitary waves in the tumor coupled with kink and anti-kink fronts for the normal tissue and the necrotic core. Finally, we study the linear stability of the solutions to calculate the time of tumor recurrence.