Accesso libero

The Practice System of Physics and Electronics Courses in Higher Vocational Colleges Based on Fractional Differential Equations

  
15 lug 2022
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Jalab, H. A., Ibrahim, R. W., & Ahmed, A. Image denoising algorithm based on the convolution of fractional Tsallis entropy with the Riesz fractional derivative. Neural Computing and Applications.,2017; 28(1): 217-223 Search in Google Scholar

Shukla, A. K., Pandey, R. K., Yadav, S., & Pachori, R. B. Generalized fractional filter-based algorithm for image denoising. Circuits, Systems, and Signal Processing.,2020; 39(1): 363-390 Search in Google Scholar

Chen, D., Sun, S., Zhang, C., Chen, Y., & Xue, D.Fractional-order TV-L 2 model for image denoising. Central European Journal of Physics.,2013; 11(10): 1414-1422 Search in Google Scholar

Huang, G., Xu, L., Chen, Q. L., & Pu, Y. F. Research on image denoising based on space fractional partial differential equations. Journal of Sichuan University: Engineering Science Edition.,2012; 44(2): 91-98 Search in Google Scholar

Jalab, H. A., & Ibrahim, R. W Fractional conway polynomials for image denoising with regularized fractional power parameters. Journal of Mathematical Imaging and Vision.,2015; 51(3): 442-450 Search in Google Scholar

Zhou, P., Fan, Q. & Zhu, J. Empirical Analysis on Environmental Regulation Performance Measurement in Manufacturing Industry: A Case Study of Chongqing, China. Applied Mathematics and Nonlinear Sciences., 2020;5(1): 25-34 Search in Google Scholar

Sulaiman, T., Bulut, H. & Baskonus, H. On the exact solutions to some system of complex nonlinear models. Applied Mathematics and Nonlinear Sciences.,2021; 6(1): 29-42 Search in Google Scholar

Xu, L., Huang, G., Chen, Q. L., Qin, H. Y., Men, T., & Pu, Y. F. An improved method for image denoising based on fractional-order integration. Frontiers of Information Technology & Electronic Engineering., 2020;21(10): 1485-1493 Search in Google Scholar

Jalab, H. A., & Ibrahim, R. W.Fractional masks based on generalized fractional differential operator for image denoising. Int. J. Comput. Inf. Syst. Control Eng.,2013; 7(2): 169-174 Search in Google Scholar

Ma, Q., Dong, F., & Kong, D. A fractional differential fidelity-based PDE model for image denoising. Machine Vision and Applications.,2017; 28(5): 635-647 Search in Google Scholar

Jun, Z., & Zhihui, W. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Applied Mathematical Modelling., 2011;35(5): 2516-2528 Search in Google Scholar

Yu, J., Tan, L., Zhou, S., Wang, L., & Wang, C. Image denoising based on adaptive fractional order anisotropic diffusion. KSII Transactions on Internet and Information Systems (TIIS)., 2017;11(1): 436-450 Search in Google Scholar

Guidotti, P., & Longo, K. Two enhanced fourth order diffusion models for image denoising. Journal of Mathematical Imaging and Vision,2011; 40(2): 188-198 Search in Google Scholar

Jalab, H. A., & Ibrahim, R. W. Image denoising algorithms based on fractional sinc α with the covariance of fractional Gaussian fields. The Imaging Science Journal.,2016; 64(2): 100-108 Search in Google Scholar

Bai, J., & Feng, X. C. Fractional-order anisotropic diffusion for image denoising. IEEE transactions on image processing., 2007;16(10): 2492-2502 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro