This work is licensed under the Creative Commons Attribution 4.0 International License.
Debnath, P., Konwar, N., & Radenović, S. (2021). Metric fixed point theory. Springer Singapore.DebnathP.KonwarN.RadenovićS. (2021). Metric fixed point theory. Springer Singapore.Search in Google Scholar
Brzdęk, J., Cădariu, L., & Ciepliński, K. (2014). Fixed point theory and the Ulam stability. Journal of function spaces, 2014(1), 829419.BrzdękJ.CădariuL.CieplińskiK. (2014). Fixed point theory and the Ulam stability. Journal of function spaces, 2014(1), 829419.Search in Google Scholar
Almezel, S., Ansari, Q. H., & Khamsi, M. A. (Eds.). (2014). Topics in fixed point theory (Vol. 5). Switzerland: Springer.AlmezelS.AnsariQ. H.KhamsiM. A. (Eds.). (2014). Topics in fixed point theory (Vol. 5). Switzerland: Springer.Search in Google Scholar
McLennan, A. (2018). Advanced fixed point theory for economics (Vol. 25). Singapore: Springer.McLennanA. (2018). Advanced fixed point theory for economics (Vol. 25). Singapore: Springer.Search in Google Scholar
Agarwal, R. P., Karapınar, E., O’Regan, D., & Roldán-López-de-Hierro, A. F. (2015). Fixed point theory in metric type spaces. Cham: Springer.AgarwalR. P.KarapınarE.O’ReganD.Roldán-López-de-HierroA. F. (2015). Fixed point theory in metric type spaces. Cham: Springer.Search in Google Scholar
Argyros, I. K., & Hilout, S. (2013). Computational methods in nonlinear analysis: efficient algorithms, fixed point theory and applications. World Scientific.ArgyrosI. K.HiloutS. (2013). Computational methods in nonlinear analysis: efficient algorithms, fixed point theory and applications. World Scientific.Search in Google Scholar
Pathak, H. K. (2018). An introduction to nonlinear analysis and fixed point theory. Springer.PathakH. K. (2018). An introduction to nonlinear analysis and fixed point theory. Springer.Search in Google Scholar
Singh, S. P., Watson, B., & Srivastava, P. (2013). Fixed point theory and best approximation: the KKM-map principle (Vol. 424). Springer Science & Business Media.SinghS. P.WatsonB.SrivastavaP. (2013). Fixed point theory and best approximation: the KKM-map principle (Vol. 424). Springer Science & Business Media.Search in Google Scholar
Hytönen, T., Van Neerven, J., Veraar, M., & Weis, L. (2016). Analysis in Banach spaces (Vol. 12). Berlin: Springer.HytönenT.Van NeervenJ.VeraarM.WeisL. (2016). Analysis in Banach spaces (Vol. 12). Berlin: Springer.Search in Google Scholar
Megginson, R. E. (2012). An introduction to Banach space theory (Vol. 183). Springer Science & Business Media.MegginsonR. E. (2012). An introduction to Banach space theory (Vol. 183). Springer Science & Business Media.Search in Google Scholar
Mujica, J. (2010). Complex analysis in Banach spaces. Courier Corporation.MujicaJ. (2010). Complex analysis in Banach spaces. Courier Corporation.Search in Google Scholar
Majak, J., Shvartsman, B. S., Kirs, M., Pohlak, M., & Herranen, H. (2015). Convergence theorem for the Haar wavelet based discretization method. Composite Structures, 126, 227-232.MajakJ.ShvartsmanB. S.KirsM.PohlakM.HerranenH. (2015). Convergence theorem for the Haar wavelet based discretization method. Composite Structures, 126, 227-232.Search in Google Scholar
Yu, C. K. W., Hu, Y., Yang, X., & Choy, S. K. (2019). Abstract convergence theorem for quasi-convex optimization problems with applications. Optimization.YuC. K. W.HuY.YangX.ChoyS. K. (2019). Abstract convergence theorem for quasi-convex optimization problems with applications. Optimization.Search in Google Scholar
Thomson, B. S. (2020). The bounded convergence theorem. The American Mathematical Monthly, 127(6), 483-503.ThomsonB. S. (2020). The bounded convergence theorem. The American Mathematical Monthly, 127(6), 483-503.Search in Google Scholar
Blahota, I., Tephnadze, G., & Toledo, R. (2015). Strong convergence theorem of Cesàro means with respect to the Walsh system. Tohoku Mathematical Journal, Second Series, 67(4), 573-584.BlahotaI.TephnadzeG.ToledoR. (2015). Strong convergence theorem of Cesàro means with respect to the Walsh system. Tohoku Mathematical Journal, Second Series, 67(4), 573-584.Search in Google Scholar
Pankov, A. A. (2013). G-convergence and homogenization of nonlinear partial differential operators (Vol. 422). Springer Science & Business Media.PankovA. A. (2013). G-convergence and homogenization of nonlinear partial differential operators (Vol. 422). Springer Science & Business Media.Search in Google Scholar
Berinde, V. (2013). Convergence theorems for fixed point iterative methods defined as admissible perturbations of a nonlinear operator. Carpathian Journal of Mathematics, 9-18.BerindeV. (2013). Convergence theorems for fixed point iterative methods defined as admissible perturbations of a nonlinear operator. Carpathian Journal of Mathematics, 9-18.Search in Google Scholar
Qiao, H., Zhang, P., Wang, D., & Zhang, B. (2012). An explicit nonlinear mapping for manifold learning. IEEE transactions on cybernetics, 43(1), 51-63.QiaoH.ZhangP.WangD.ZhangB. (2012). An explicit nonlinear mapping for manifold learning. IEEE transactions on cybernetics, 43(1), 51-63.Search in Google Scholar
Yang, Y., & Wu, Q. I. N. G. S. H. A. N. (2017, October). A novel kinship verification method based on deep transfer learning and feature nonlinear mapping. In Proc. int. conf. artif. intell. eng. appl.(AIEA) (pp. 947-956).YangY.WuQ. I. N. G. S. H. A. N. (2017, October). A novel kinship verification method based on deep transfer learning and feature nonlinear mapping. In Proc. int. conf. artif. intell. eng. appl.(AIEA) (pp. 947-956).Search in Google Scholar