Accesso libero

The self-similarity properties and multifractal analysis of DNA sequences

,  e   
29 giu 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

In this work is presented a pedagogical point of view of multifractal analysis deoxyribonucleic acid (DNA) sequences is presented. The DNA sequences are formed by 4 nucleotides (adenine, cytosine, guanine, and tymine). Following Jeffrey’s paper we associated a simple contractive function to each nucleotide, and constructed the Hutchinson’s operator W, which was used to build covers of different sizes of the unitary square Q, thus Wk(Q) is a cover of Q, conformed by 4k squares Qk of size 2−k, as each Qk corresponds to a unique subsequence of nucleotides with length k : b1b2...bk. Besides, it is obtained the optimal cover Ck to the fractal F generated for each DNA sequence was obtained. We made a multifractal decomposition of Ck in terms of the sets Jα conformed by the Qk’s with the same value of the Holder exponent α, and determined f (α), the Hausdorff dimension of Jα, using the curdling theorem.

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro