Optimal control problems for differential equations applied to tumor growth: state of the art
e
15 lug 2018
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 15 lug 2018
Pagine: 375 - 402
Ricevuto: 09 feb 2018
Accettato: 15 lug 2018
DOI: https://doi.org/10.21042/AMNS.2018.2.00029
Parole chiave
© 2018 C. Rojas, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9
![Optimal solution for functional Jw(u) in (29) with w = ws = 0:004067 and total dose M = 5, the time horizon is 30 days. (left) optimal control u(t) which is totally singular on [0,1], (right) proliferative cells P.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709ec071e4585e08aa187f/j_AMNS.2018.2.00029_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143026Z&X-Amz-Expires=3600&X-Amz-Signature=3257fde87649fd05e9b81b615253c014a11c1830135c7d8e390d44f627b8078c&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 10
![Optimal solution for functional Jw(u) in (29) with w = 0 and total dose M = 5, the time horizon is T = 30 months. Top row: a) proliferative cells P, b) nonproliferative quiescent cells Q, Bottom row: c) damaged quiescent cells Qp, d) optimal control u*(t) and switching function ϕ, the switching function ϕ(t) is zero on the singular arc [t1,t2].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709ec071e4585e08aa187f/j_AMNS.2018.2.00029_fig_010.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143026Z&X-Amz-Expires=3600&X-Amz-Signature=5421f1d365cf6436c0ee80d73ce24095fe1c09163b6fe2093f29bfc9cd548742&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 11
![Optimal solution for functional Jw(u) in (29) with w = 1 and total dose M = 5, the time horizon is T = 30 months. Top row: a) proliferative cells P, b) nonproliferative quiescent cells Q, Bottom row: c) damaged quiescent cells Qp, d) optimal control u*(t) and switching function ϕ, the switching function ϕ(t) is zero on the singular arc [t1, t2].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709ec071e4585e08aa187f/j_AMNS.2018.2.00029_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143026Z&X-Amz-Expires=3600&X-Amz-Signature=b577b55ca76ccad8c84ae6b50821defb44e83933f9910270de8f7df824b92b92&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 12
![[Color Online]. a) Evolution of the solutions to Eqs. (52), (53) and (54), p (solid line), s (dotted line), and q (solid-dot line) with the initial conditions (p0,s0,q0) = (12000,5000,14000) b) Optimal control u(t) (solid line) and switching function ϕ1 (dotted line) for M = 300 doses and uM = 75 c) Optimal control v(t) (solid line) and switching function ϕ2 (dotted line) for N = 5 doses and vM = 1.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709ec071e4585e08aa187f/j_AMNS.2018.2.00029_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143026Z&X-Amz-Expires=3600&X-Amz-Signature=53e19a5f139f1614e24553719d5ed1dcd3c466bcccb8de99344af471f9338d52&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 13
![[Color Online]. a) Evolution of the solutions to Eqs. (52), (53) and (54), p (solid line), s (dotted line), and q (solid-dot line) with the initial conditions (p0,s0,q0) = (12000,5000,5000) b) Optimal control u(t) (solid line) and switching function ϕ1 (dotted line) for M = 300 doses and uM = 75 c) Optimal control v(t) (solid line) and switching function ϕ2 (dotted line) for N = 5 doses and vM = 1.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709ec071e4585e08aa187f/j_AMNS.2018.2.00029_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T143026Z&X-Amz-Expires=3600&X-Amz-Signature=f9b3996b630ae5d0e8e70fd8d066123e9e33a73f83209fa55056d49c6055d7ed&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Numerical values for the coefficients and parameters used in numerical computations for the optimal control problem 1, extracted from [41]_
Coefficient | Interpretation | Numerical value |
---|---|---|
Inverse transit time through | 0.197 | |
Inverse transit time through | 0.356 | |
Initial condition for | 0.7012 | |
Initial condition for | 0.2988 | |
Maximum dose rate/concentration effectiveness of the drug | 0.90 | |
Penalty/weight for the total dose of cytotoxic agent | 0.50 | |
Penalty/weight in the objective for the average number of cancer cells in | 0.10 | |
Penalty/weight in the objective for the average number of cancer cells in | 0.10 | |
Penalty/weight in the objective for the average number of cancer cells in | 3 | |
Penalty/weight in the objective for the average number of cancer cells in | 3 | |
Therapy horizon |
Values of the biological parameters in the model of LGG evolution_
Variable | Value (Units) |
---|---|
0.924 mm | |
42.3 mm | |
0 mm | |
100 mm | |
0.114 mo | |
0.0226 mo | |
0.0045 mo | |
0.0214 mo | |
0.842 |
Values of the biological parameters in the model_
Variable | Description | Value (Units) |
---|---|---|
Tumor growth parameter | 0.084 day | |
Tumor-induced stimulation parameter | 5.85 day | |
Tumor-induced inhibition parameter | 0.00873 mm | |
Loss of vascular support | 0.02 day | |
Maduration of unstable vessels parameter | 0.025 day | |
Anti-angiogenic elimination parameter | 0.15 kg/mg day | |
Cytotoxic killing parameter for the tumor | 0.1 kg/mg day |
Numerical values for the coefficients and parameters used in computations for the optimal control problem 3 with cytostatic and cytotoxic agents, extracted from [41]_
Coefficient | Interpretation | Numerical value |
---|---|---|
Inverse transit time through | 0.197 | |
Inverse transit time through | 0.395 | |
Inverse transit time through | 0.107 | |
Initial condition for | 0.3866 | |
Initial condition for | 0.1722 | |
Initial condition for | 0.4412 | |
Maximum dosage/concentration/effectiveness of cytotoxic agent | 0.95 | |
Maximum blocking effect of cytostatic agent | 0.30 | |
Penalty/weight at the cytotoxic agent | 1 | |
Penalty/weight at the cytostatic agent | 0.01 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 0.1 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 0.1 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 0.1 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 8.25 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 8.25 | |
Penalty/weight in the objective for the average number of cancer cells in | 1, resp. 8.25 | |
Therapy horizon |
Numerical values for the coefficients and parameters used in numerical computations for the optimal control problem 2 with cytotoxic and recruitment agents, extracted from [41]_
Coefficient | Interpretation | Numerical value |
---|---|---|
Inverse transit time through | 0.05 | |
Inverse transit time through | 0.5 | |
Inverse transit time through | 1 | |
Probability that cells enter | 0.9 | |
Probability that cells enter | 0.1 | |
Initial condition for | 0.8589 | |
Initial condition for | 0.0954 | |
Initial condition for | 0.0456 | |
Maximum dose rate/concentration effectiveness | 0.95 | |
Maximum dose rate/concentration effectiveness | 6 | |
Penalty/weight at the cytotoxic agent | 1 | |
Penalty/weight at the recruiting agent | 0, 0.1 | |
Penalty/weight in the objective for the average number of cancer cells in | 3 | |
Penalty/weight in the objective for the average number of cancer cells in | 1 | |
Penalty/weight in the objective for the average number of cancer cells in | 1 | |
Penalty/weight in the objective for the average number of cancer cells in | 3 | |
Penalty/weight in the objective for the average number of cancer cells in | 1 | |
Penalty/weight in the objective for the average number of cancer cells in | 1 | |
Therapy horizon |