Accesso libero

Regularizing algorithm for mixed matrix pencils

  
18 apr 2017
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

D.D. de Oliveira, R.A. Horn, T. Klimchuk, V.V. Sergeichuk, (2012), Remarks on the classification of a pair of commuting semilinear operators, Linear Algebra Appl., 436, 3362–3372, 10.1016/j.laa.2011.11.029de OliveiraD.D.HornR.A.KlimchukT.SergeichukV.V.2012Remarks on the classification of a pair of commuting semilinear operatorsLinear Algebra Appl4363362337210.1016/j.laa.2011.11.029Open DOISearch in Google Scholar

D.Ž. Djoković, (1978), Classification of pairs consisting of a linear and a semilinear map, Linear Algebra Appl., 20, 147–165, 10.1016/0024-3795(78)90047-2DjokovićD.Ž.1978Classification of pairs consisting of a linear and a semilinear mapLinear Algebra Appl2014716510.1016/0024-3795(78)90047-2Open DOISearch in Google Scholar

Y.P. Hong, R.A. Horn, (1988), A canonical form for matrices under consimilarity, Linear Algebra Appl., 102, 143–168, 10.1016/0024-3795(88)90324-2HongY.P.HornR.A.1988A canonical form for matrices under consimilarityLinear Algebra Appl10214316810.1016/0024-3795(88)90324-2Open DOISearch in Google Scholar

R.A. Horn, C.R. Johnson, (2012), Matrix Analysis, 2nd ed., Cambridge University Press, New York, 10.1017/CBO9780511810817HornR.A.JohnsonC.R.2012Matrix AnalysisCambridge University PressNew York10.1017/CBO9780511810817Open DOISearch in Google Scholar

R.A. Horn, V.V. Sergeichuk, (2006), A regularization algorithm for matrices of bilinear and sesquilinear forms, Linear Algebra Appl., 412, 380–395, 10.1016/j.laa.2005.07.004HornR.A.SergeichukV.V.2006A regularization algorithm for matrices of bilinear and sesquilinear formsLinear Algebra Appl41238039510.1016/j.laa.2005.07.004Open DOISearch in Google Scholar

V.V. Sergeichuk, (2004), Computation of canonical matrices for chains and cycles of linear mappings, Linear Algebra Appl., 376, 235–263, 10.1016/j.laa.2003.07.001SergeichukV.V.2004Computation of canonical matrices for chains and cycles of linear mappingsLinear Algebra Appl37623526310.1016/j.laa.2003.07.001Open DOISearch in Google Scholar

P. Van Dooren, (1979), The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra Appl., 27, 103–140, 10.1016/0024-3795(79)90035-1Van DoorenP.1979The computation of Kronecker’s canonical form of a singular pencilLinear Algebra Appl2710314010.1016/0024-3795(79)90035-1Open DOISearch in Google Scholar

A. Varga, (2004), Computation of Kronecker-like forms of periodic matrix pairs, Symp. on Mathematical Theory of Networks and Systems, Leuven, Belgium, July 5–9.VargaA.2004Computation of Kronecker-like forms of periodic matrix pairsSymp. on Mathematical Theory of Networks and SystemsLeuvenBelgiumJuly59Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro