This work is licensed under the Creative Commons Attribution 4.0 International License.
Costa, J. C., Spina, F., Lugoda, P., Garcia-Garcia, L., Roggen, D., & Münzenrieder, N. (2019). Flexible sensors—from materials to applications. Technologies, 7(2), 35.CostaJ. C.SpinaF.LugodaP.Garcia-GarciaL.RoggenD. & MünzenriederN. (2019). Flexible sensors—from materials to applications. Technologies, 7(2), 35.Search in Google Scholar
Luo, Y., Abidian, M. R., Ahn, J. H., Akinwande, D., Andrews, A. M., Antonietti, M., ... & Chen, X. (2023). Technology roadmap for flexible sensors. ACS nano, 17(6), 5211-5295.LuoY.AbidianM. R.AhnJ. H.AkinwandeD.AndrewsA. M.AntoniettiM. ... & ChenX. (2023). Technology roadmap for flexible sensors. ACS nano, 17(6), 5211-5295.Search in Google Scholar
Wang, Y., Yang, B., Hua, Z., Zhang, J., Guo, P., Hao, D., ... & Huang, J. (2021). Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal of Physics D: Applied Physics, 55(13), 134001.WangY.YangB.HuaZ.ZhangJ.GuoP.HaoD. ... & HuangJ. (2021). Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal of Physics D: Applied Physics, 55(13), 134001.Search in Google Scholar
Heo, J. S., Shishavan, H. H., Soleymanpour, R., Kim, J., & Kim, I. (2019). Textile-based stretchable and flexible glove sensor for monitoring upper extremity prosthesis functions. IEEE Sensors Journal, 20(4), 1754-1760.HeoJ. S.ShishavanH. H.SoleymanpourR.KimJ. & KimI. (2019). Textile-based stretchable and flexible glove sensor for monitoring upper extremity prosthesis functions. IEEE Sensors Journal, 20(4), 1754-1760.Search in Google Scholar
Wang, J., Suo, J., Song, Z., Li, W. J., & Wang, Z. (2023). Nanomaterial-based flexible sensors for metaverse and virtual reality applications. International Journal of Extreme Manufacturing, 5(3), 032013.WangJ.SuoJ.SongZ.LiW. J. & WangZ. (2023). Nanomaterial-based flexible sensors for metaverse and virtual reality applications. International Journal of Extreme Manufacturing, 5(3), 032013.Search in Google Scholar
Li, Y., Wu, G., Song, G., Lu, S. H., Wang, Z., Sun, H., ... & Wang, X. (2022). Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. ACS sensors, 7(8), 2400-2409.LiY.WuG.SongG.LuS. H.WangZ.SunH. ... & WangX. (2022). Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. ACS sensors, 7(8), 2400-2409.Search in Google Scholar
Afzal, U., Afzal, F., Maryam, K., & Aslam, M. (2022). Fabrication of flexible temperature sensors to explore indeterministic data analysis for robots as an application of Internet of Things. RSC advances, 12(27), 17138-17145.AfzalU.AfzalF.MaryamK. & AslamM. (2022). Fabrication of flexible temperature sensors to explore indeterministic data analysis for robots as an application of Internet of Things. RSC advances, 12(27), 17138-17145.Search in Google Scholar
Elgeneidy, K., Lohse, N., & Jackson, M. (2018). Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors–a data-driven approach. Mechatronics, 50, 234-247.ElgeneidyK.LohseN. & JacksonM. (2018). Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors–a data-driven approach. Mechatronics, 50, 234-247.Search in Google Scholar
Servati, A., Zou, L., Wang, Z. J., Ko, F., & Servati, P. (2017). Novel flexible wearable sensor materials and signal processing for vital sign and human activity monitoring. Sensors, 17(7), 1622.ServatiA.ZouL.WangZ. J.KoF. & ServatiP. (2017). Novel flexible wearable sensor materials and signal processing for vital sign and human activity monitoring. Sensors, 17(7), 1622.Search in Google Scholar
Yoo, D., Won, D. J., Cho, W., Lim, J., & Kim, J. (2021). Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range. Advanced Materials Technologies, 6(11), 2100358.YooD.WonD. J.ChoW.LimJ. & KimJ. (2021). Double side electromagnetic interference-shielded bending-insensitive capacitive-type flexible touch sensor with linear response over a wide detection range. Advanced Materials Technologies, 6(11), 2100358.Search in Google Scholar
Wang, X., Mu, B., Zhang, L., & Zhang, X. (2022). Drift characteristic analysis of additive manufactured Ag NPs-PEDOT: PSS flexible temperature sensor. Results in Engineering, 13, 100384.WangX.MuB.ZhangL. & ZhangX. (2022). Drift characteristic analysis of additive manufactured Ag NPs-PEDOT: PSS flexible temperature sensor. Results in Engineering, 13, 100384.Search in Google Scholar
Fontana, C. L., Donati, M., Cester, D., Fanucci, L., Iovene, A., Swiderski, L., ... & Lunardon, M. (2017). A distributed data acquisition system for the sensor network of the TAWARA_RTM project. Physics Procedia, 90, 271-278.FontanaC. L.DonatiM.CesterD.FanucciL.IoveneA.SwiderskiL. ... & LunardonM. (2017). A distributed data acquisition system for the sensor network of the TAWARA_RTM project. Physics Procedia, 90, 271-278.Search in Google Scholar
Jha, S., Katz, D. S., Luckow, A., Chue Hong, N., Rana, O., & Simmhan, Y. (2017). Introducing distributed dynamic data-intensive (D3) science: Understanding applications and infrastructure. Concurrency and Computation: Practice and Experience, 29(8), e4032.JhaS.KatzD. S.LuckowA.Chue HongN.RanaO. & SimmhanY. (2017). Introducing distributed dynamic data-intensive (D3) science: Understanding applications and infrastructure. Concurrency and Computation: Practice and Experience, 29(8), e4032.Search in Google Scholar
Pontarolli, R. P., Bigheti, J. A., Domingues, F. O., de Sá, L. B., & Godoy, E. P. (2022). Distributed I/O as a service: A data acquisition solution to Industry 4.0. HardwareX, 12, e00355.PontarolliR. P.BighetiJ. A.DominguesF. O.de SáL. B. & GodoyE. P. (2022). Distributed I/O as a service: A data acquisition solution to Industry 4.0. HardwareX, 12, e00355.Search in Google Scholar
Ayadi, A., Ghorbel, O., Obeid, A. M., & Abid, M. (2017). Outlier detection approaches for wireless sensor networks: A survey. Computer Networks, 129, 319-333.AyadiA.GhorbelO.ObeidA. M. & AbidM. (2017). Outlier detection approaches for wireless sensor networks: A survey. Computer Networks, 129, 319-333.Search in Google Scholar
Wang, H., Bah, M. J., & Hammad, M. (2019). Progress in outlier detection techniques: A survey. Ieee Access, 7, 107964-108000.WangH.BahM. J. & HammadM. (2019). Progress in outlier detection techniques: A survey. Ieee Access, 7, 107964-108000.Search in Google Scholar
Liu, H., Li, J., Wu, Y., & Fu, Y. (2019). Clustering with outlier removal. IEEE transactions on knowledge and data engineering, 33(6), 2369-2379.LiuH.LiJ.WuY. & FuY. (2019). Clustering with outlier removal. IEEE transactions on knowledge and data engineering, 33(6), 2369-2379.Search in Google Scholar
Muhr, D., & Affenzeller, M. (2022). Little data is often enough for distance-based outlier detection. Procedia Computer Science, 200, 984-992.MuhrD. & AffenzellerM. (2022). Little data is often enough for distance-based outlier detection. Procedia Computer Science, 200, 984-992.Search in Google Scholar
Zimek, A., & Filzmoser, P. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1280.ZimekA. & FilzmoserP. (2018). There and back again: Outlier detection between statistical reasoning and data mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1280.Search in Google Scholar
Ur Rehman, A., & Belhaouari, S. B. (2021). Unsupervised outlier detection in multidimensional data. Journal of Big Data, 8(1), 80.Ur RehmanA. & BelhaouariS. B. (2021). Unsupervised outlier detection in multidimensional data. Journal of Big Data, 8(1), 80.Search in Google Scholar
Lu, H., Liu, Y., Fei, Z., & Guan, C. (2018). An outlier detection algorithm based on cross-correlation analysis for time series dataset. Ieee Access, 6, 53593-53610.LuH.LiuY.FeiZ. & GuanC. (2018). An outlier detection algorithm based on cross-correlation analysis for time series dataset. Ieee Access, 6, 53593-53610.Search in Google Scholar
Nikolova, N., Rodríguez, R. M., Symes, M., Toneva, D., Kolev, K., & Tenekedjiev, K. (2021). Outlier detection algorithms over fuzzy data with weighted least squares. International Journal of Fuzzy Systems, 23(5), 1234-1256.NikolovaN.RodríguezR. M.SymesM.TonevaD.KolevK. & TenekedjievK. (2021). Outlier detection algorithms over fuzzy data with weighted least squares. International Journal of Fuzzy Systems, 23(5), 1234-1256.Search in Google Scholar
Singh, A. K., & Lalitha, S. (2018). A novel spatial outlier detection technique. Communications in Statistics-Theory and Methods, 47(1), 247-257.SinghA. K. & LalithaS. (2018). A novel spatial outlier detection technique. Communications in Statistics-Theory and Methods, 47(1), 247-257.Search in Google Scholar
Tang, B., & He, H. (2017). A local density-based approach for outlier detection. Neurocomputing, 241, 171-180.TangB. & HeH. (2017). A local density-based approach for outlier detection. Neurocomputing, 241, 171-180.Search in Google Scholar
Huang, J., Cheng, D., & Zhang, S. (2023). A novel outlier detecting algorithm based on the outlier turning points. Expert Systems with Applications, 231, 120799.HuangJ.ChengD. & ZhangS. (2023). A novel outlier detecting algorithm based on the outlier turning points. Expert Systems with Applications, 231, 120799.Search in Google Scholar
Tran, L., Mun, M. Y., & Shahabi, C. (2020). Real-time distance-based outlier detection in data streams. Proceedings of the VLDB Endowment, 14(2), 141-153.TranL.MunM. Y. & ShahabiC. (2020). Real-time distance-based outlier detection in data streams. Proceedings of the VLDB Endowment, 14(2), 141-153.Search in Google Scholar
Ray, B., Ghosh, S., Ahmed, S., Sarkar, R., & Nasipuri, M. (2022). Outlier detection using an ensemble of clustering algorithms. Multimedia Tools and Applications, 81(2), 2681-2709.RayB.GhoshS.AhmedS.SarkarR. & NasipuriM. (2022). Outlier detection using an ensemble of clustering algorithms. Multimedia Tools and Applications, 81(2), 2681-2709.Search in Google Scholar
Wang, Y. F., Jiong, Y., Su, G. P., & Qian, Y. R. (2019). A new outlier detection method based on OPTICS. Sustainable cities and society, 45, 197-212.WangY. F.JiongY.SuG. P. & QianY. R. (2019). A new outlier detection method based on OPTICS. Sustainable cities and society, 45, 197-212.Search in Google Scholar
Hassan, A. F., Barakat, S., & Rezk, A. (2022). Towards a deep learning-based outlier detection approach in the context of streaming data. Journal of Big Data, 9(1), 120.HassanA. F.BarakatS. & RezkA. (2022). Towards a deep learning-based outlier detection approach in the context of streaming data. Journal of Big Data, 9(1), 120.Search in Google Scholar
Abhaya, A., & Patra, B. K. (2023). An efficient method for autoencoder based outlier detection. Expert Systems with Applications, 213, 118904.AbhayaA. & PatraB. K. (2023). An efficient method for autoencoder based outlier detection. Expert Systems with Applications, 213, 118904.Search in Google Scholar
Tingrui Pei, Zhiwen Hou, Jun Zhou, Chixin Xiao & Juan Zou. (2024). Blockchain-based anonymous authentication and data aggregation for advanced metering infrastructure in smart grid. International Journal of Critical Infrastructure Protection 100702-100702.PeiTingruiHouZhiwenZhouJunXiaoChixin & ZouJuan. (2024). Blockchain-based anonymous authentication and data aggregation for advanced metering infrastructure in smart grid. International Journal of Critical Infrastructure Protection100702-100702.Search in Google Scholar
Xiangliang Meng, Zhe Zhang, Xiao Liao, Wei Cui & Shilin Wang. (2025). Power quality monitoring and analysis method of distribution station area based on edge computing. Journal of Physics: Conference Series(1), 012004-012004.MengXiangliangZhangZheLiaoXiaoCuiWei & WangShilin. (2025). Power quality monitoring and analysis method of distribution station area based on edge computing. Journal of Physics: Conference Series(1), 012004-012004.Search in Google Scholar
Liang Yanhe, Li Qi, Gong You, Wang Xiaoyu & Li Xinggang. (2023). Fault Diagnosis Method for High Voltage Power Metering System Based on the PCA-ELM Algorithm. Journal of Physics: Conference Series(1).YanheLiangQiLiYouGongXiaoyuWang & XinggangLi. (2023). Fault Diagnosis Method for High Voltage Power Metering System Based on the PCA-ELM Algorithm. Journal of Physics:Conference Series(1).Search in Google Scholar
Nian Zhou, Ping Jiang, Shiliang Jiang, Leshi Shu, Xiaoxian Ni & Linjun Zhong. (2024). An Identification and Localization Method for 3D Workpiece Welds Based on the DBSCAN Point Cloud Clustering Algorithm. Journal of Manufacturing and Materials Processing(6), 287-287.ZhouNianJiangPingJiangShiliangShuLeshiNiXiaoxian & ZhongLinjun. (2024). An Identification and Localization Method for 3D Workpiece Welds Based on the DBSCAN Point Cloud Clustering Algorithm. Journal of Manufacturing and Materials Processing(6), 287-287.Search in Google Scholar
Zhuo Lv, Li Di, Cen Chen, Bo Zhang & Nuannuan Li. (2023). A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors. Processes(7).LvZhuoDiLiChenCenZhangBo & LiNuannuan. (2023). A Fast Density Peak Clustering Method for Power Data Security Detection Based on Local Outlier Factors. Processes(7).Search in Google Scholar