Acceso abierto

Geometric significance of eigenvalues and eigenvectors in linear algebra and their potential value in data analysis

  
24 sept 2025

Cite
Descargar portada

Kherif, F., & Latypova, A. (2020). Principal component analysis. In Machine learning (pp. 209-225). Academic Press. KherifF.LatypovaA. (2020). Principal component analysis In Machine learning (pp. 209-225. Academic Press. Search in Google Scholar

Tharwat, A. (2016). Principal component analysis-a tutorial. International Journal of Applied Pattern Recognition, 3(3), 197-240. TharwatA. (2016). Principal component analysis-a tutorial. International Journal of Applied Pattern Recognition, 3(3), 197-240. Search in Google Scholar

Montano, V., & Jombart, T. (2017). An Eigenvalue test for spatial principal component analysis. BMC bioinformatics, 18, 1-7. MontanoV.JombartT. (2017). An Eigenvalue test for spatial principal component analysis. BMC bioinformatics, 18, 1-7. Search in Google Scholar

Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292-299. SalemN.HusseinS. (2019). Data dimensional reduction and principal components analysis. Procedia Computer Science, 163, 292-299. Search in Google Scholar

Kong, X., Hu, C., Duan, Z., Kong, X., Hu, C., & Duan, Z. (2017). Generalized principal component analysis. Principal Component Analysis Networks and Algorithms, 185-233. KongX.HuC.DuanZ.KongX.HuC.DuanZ. (2017). Generalized principal component analysis. Principal Component Analysis Networks and Algorithms, 185-233. Search in Google Scholar

Robert Frost, H. (2022). Eigenvectors from eigenvalues sparse principal component analysis. Journal of Computational and Graphical Statistics, 31(2), 486-501. Robert FrostH. (2022). Eigenvectors from eigenvalues sparse principal component analysis. Journal of Computational and Graphical Statistics, 31(2), 486-501. Search in Google Scholar

Greenacre, M., Groenen, P. J., Hastie, T., d’Enza, A. I., Markos, A., & Tuzhilina, E. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 100. GreenacreM.GroenenP. J.HastieT.d’EnzaA. I.MarkosA.TuzhilinaE. (2022). Principal component analysis. Nature Reviews Methods Primers, 2(1), 100. Search in Google Scholar

Mishra, S. P., Sarkar, U., Taraphder, S., Datta, S., Swain, D., Saikhom, R., ... & Laishram, M. (2017). Multivariate statistical data analysis-principal component analysis (PCA). International Journal of Livestock Research, 7(5), 60-78. MishraS. P.SarkarU.TaraphderS.DattaS.SwainD.SaikhomR.LaishramM. (2017). Multivariate statistical data analysis-principal component analysis (PCA). International Journal of Livestock Research, 7(5), 60-78. Search in Google Scholar

George, R. K., & Ajayakumar, A. (2024). Eigenvalues and Eigenvectors. In A Course in Linear Algebra (pp. 121-161). Singapore: Springer Nature Singapore. GeorgeR. K.AjayakumarA. (2024). Eigenvalues and Eigenvectors. A Course in Linear Algebra (pp. 121-161. Springer Nature Singapore. Search in Google Scholar

Aït-Sahalia, Y., & Xiu, D. (2019). Principal component analysis of high-frequency data. Journal of the american statistical association, 114(525), 287-303. Aït-SahaliaY.XiuD. (2019). Principal component analysis of high-frequency data. Journal of the American Statistical Association, 114(525), 287-303. Search in Google Scholar

Frost, H. R. (2021). Eigenvectors from eigenvalues sparse principal component analysis (EESPCA). Journal of computational and graphical statistics: a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 31(2), 486. FrostH. R. (2021). Eigenvectors from eigenvalues sparse principal component analysis (EESPCA). Journal of Computational and Graphical Statistics: a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 31(2), 486. Search in Google Scholar

Pan, W., Wang, J., & Sun, D. (2020). A new strategy for directly calculating the minimum eigenvector of matrices without diagonalization. Scientific Reports, 10(1), 3414. PanW.WangJ.SunD. (2020). A new strategy for directly calculating the minimum eigenvector of matrices without diagonalization. Scientific Reports, 10(1), 3414. Search in Google Scholar

Papadopoulos, N. A., & Scheck, F. (2024). The Role of Eigenvalues and Eigenvectors. In Linear Algebra for Physics (pp. 241-298). Cham: Springer International Publishing. PapadopoulosN. A.ScheckF. (2024). The Role of Eigenvalues and Eigenvectors. Linear Algebra for Physics (pp. 241-298. Cham: Springer International Publishing. Search in Google Scholar

Prince, T., & Angulo, N. (2014). Application Of Eigenvalues And Eigenvectors And Diagonalization To Environmental Science. Science and Education, 2(4), 106-109. PrinceT.AnguloN. (2014). Application Of Eigenvalues And Eigenvectors And Diagonalization To Environmental Science. Science and Education, 2(4), 106-109. Search in Google Scholar

Günhan Caglayan. (2015). Making sense of eigenvalue—eigenvector relationships: Math majors’ linear algebra – Geometry connections in a dynamic environment. Journal of Mathematical Behavior, 131-153. CaglayanGünhan (2015). Making sense of eigenvalue—eigenvector relationships: Math majors’ linear algebra – Geometry connections in a dynamic environment. Journal of Mathematical Behavior, 131-153. Search in Google Scholar

Ansari Mohd Asif, Shariq Mohd & Mahdi Fareed. (2025). Multioptimization of FA-Based Geopolymer Concrete Mixes: A Synergistic Approach Using Gray Relational Analysis and Principal Component Analysis. Journal of Structural Design and Construction Practice(1). AnsariMohd AsifShariqMohdMahdiFareed (2025). Multioptimization of FA-Based Geopolymer Concrete Mixes: A Synergistic Approach Using Gray Relational Analysis and Principal Component Analysis. Journal of Structural Design and Construction Practice(1). Search in Google Scholar

Li Ni, Peng Manman & Wu Qiang. (2024). A Spectral Clustering Algorithm for Non-Linear Graph Embedding in Information Networks. Applied Sciences(11). LiNiPengManmanWuQiang (2024). A Spectral Clustering Algorithm for Non-Linear Graph Embedding in Information Networks. Applied Sciences(11). Search in Google Scholar