This work is licensed under the Creative Commons Attribution 4.0 International License.
Li, X., Shen, F., Yu, S., & Xue, Z. (2020). Flux-regulation principle and performance analysis of a novel axial partitioned stator hybrid-excitation flux-switching machine using parallel magnetic circuit. IEEE Transactions on Industrial Electronics, 68(8), 6560-6573.LiX.ShenF.YuS.XueZ. (2020). Flux-regulation principle and performance analysis of a novel axial partitioned stator hybrid-excitation flux-switching machine using parallel magnetic circuit. IEEE Transactions on Industrial Electronics, 68(8), 6560-6573.Search in Google Scholar
Akuru, U. B. (2021). AN OVERVIEW ON COGGING TORQUE AND TORQUE RIPPLE REDUCTION IN FLUX SWITCHING MACHINES. International Journal of Power and Energy Systems, 41(3).AkuruU. B. (2021). AN OVERVIEW ON COGGING TORQUE AND TORQUE RIPPLE REDUCTION IN FLUX SWITCHING MACHINES. International Journal of Power and Energy Systems, 41(3).Search in Google Scholar
Deng, C., Ye, C., Yang, J., Sun, S., & Yu, D. (2020). A Novel Permanent Magnet Linear Motor for the Application of Electromagnetic Launch System. IEEE Transactions on Applied Superconductivity, 30(4), 2986732.DengC.YeC.YangJ.SunS.YuD. (2020). A Novel Permanent Magnet Linear Motor for the Application of Electromagnetic Launch System. IEEE Transactions on Applied Superconductivity, 30(4), 2986732.Search in Google Scholar
Du, H., Chen, X., Wen, G., Yu, X., & Lü, J. (2018). Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 65(12), 9916-9927.DuH.ChenX.WenG.YuX.LüJ. (2018). Discrete-time fast terminal sliding mode control for permanent magnet linear motor. IEEE Transactions on Industrial Electronics, 65(12), 9916-9927.Search in Google Scholar
Song, J., Dong, F., Zhao, J., Lu, S., Dou, S., & Wang, H. (2017). Optimal design of permanent magnet linear synchronous motors based on Taguchi method. IET Electric Power Applications, 1(11), 41-48.SongJ.DongF.ZhaoJ.LuS.DouS.WangH. (2017). Optimal design of permanent magnet linear synchronous motors based on Taguchi method. IET Electric Power Applications, 1(11), 41-48.Search in Google Scholar
Kwon, Y. S., Lee, S., Park, J. M., Sung, J. M., Son, D. H., Kim, K. M., … & Yoon, J. Y. (2023). Tangential and Normal Force Generation-Mechanism in Permanent Magnet Linear Synchronous Motors. IEEE Transactions on Energy Conversion.KwonY. S.LeeS.ParkJ. M.SungJ. M.SonD. H.KimK. M.YoonJ. Y. (2023). Tangential and Normal Force Generation-Mechanism in Permanent Magnet Linear Synchronous Motors. IEEE Transactions on Energy Conversion.Search in Google Scholar
Masmoudi, A. (2024). Lorentz force-based assessment of the torque production of TFPM machines. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.MasmoudiA. (2024). Lorentz force-based assessment of the torque production of TFPM machines. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.Search in Google Scholar
Wang, P., Hua, W., Zhang, G., Wang, B., & Cheng, M. (2022). Principle of Flux-Switching Permanent Magnet Machine by Magnetic Field Modulation Theory Part I: Back-Electromotive-Force Generation. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 69(3).WangP.HuaW.ZhangG.WangB.ChengM. (2022). Principle of Flux-Switching Permanent Magnet Machine by Magnetic Field Modulation Theory Part I: Back-Electromotive-Force Generation. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 69(3).Search in Google Scholar
Hirosawa, S., Nishino, M., & Miyashita, S. (2017). Perspectives for high-performance permanent magnets: applications, coercivity, and new materials. Advances in Natural Sciences. Nanoscience and Nanotechnology (Online), 8(1).HirosawaS.NishinoM.MiyashitaS. (2017). Perspectives for high-performance permanent magnets: applications, coercivity, and new materials. Advances in Natural Sciences. Nanoscience and Nanotechnology (Online), 8(1).Search in Google Scholar
Hoang, V. D., & Ebeid, E. S. M. (2024). Manipulating Magnetic Field of the Magnetic Gripper With Charging Feature for Drones on Energized Power Lines. IEEE Transactions on Industrial Electronics.HoangV. D.EbeidE. S. M. (2024). Manipulating Magnetic Field of the Magnetic Gripper With Charging Feature for Drones on Energized Power Lines. IEEE Transactions on Industrial Electronics.Search in Google Scholar
Deng, W., & Zuo, S. (2019). Electromagnetic Vibration and Noise of the Permanent-Magnet Synchronous Motors for Electric Vehicles: An Overview. IEEE Transactions on Transportation Electrification, 5(1).DengW.ZuoS. (2019). Electromagnetic Vibration and Noise of the Permanent-Magnet Synchronous Motors for Electric Vehicles: An Overview. IEEE Transactions on Transportation Electrification, 5(1).Search in Google Scholar
Fu, D., Xu, Y., Gillon, F., Gong, J., & Bracikowski, N. (2018). Presentation of a Novel Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method. IEEE Transactions on Magnetics, 54(3), 2756847.FuD.XuY.GillonF.GongJ.BracikowskiN. (2018). Presentation of a Novel Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method. IEEE Transactions on Magnetics, 54(3), 2756847.Search in Google Scholar
Chen, S. Y., Chiang, H. H., Liu, T. S., & Chang, C. H. (2019). Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics, 24(2), 741-752.ChenS. Y.ChiangH. H.LiuT. S.ChangC. H. (2019). Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control. IEEE/ASME Transactions on Mechatronics, 24(2), 741-752.Search in Google Scholar
Zhang, J., Wang, H., Cao, Z., Zheng, J., Yu, M., Yazdani, A., & Shahnia, F. (2020). Fast nonsingular terminal sliding mode control for permanent-magnet linear motor via ELM. Neural Computing & Applications, 32(18).ZhangJ.WangH.CaoZ.ZhengJ.YuM.YazdaniA.ShahniaF. (2020). Fast nonsingular terminal sliding mode control for permanent-magnet linear motor via ELM. Neural Computing & Applications, 32(18).Search in Google Scholar
Dong, Q., Liu, X., Qi, H., Sun, C., & Wang, Y. (2019). Analysis and evaluation of electromagnetic vibration and noise in permanent magnet synchronous motor with rotor step skewing. Science in China E: Technological Sciences, 62(5), 839-848.DongQ.LiuX.QiH.SunC.WangY. (2019). Analysis and evaluation of electromagnetic vibration and noise in permanent magnet synchronous motor with rotor step skewing. Science in China E: Technological Sciences, 62(5), 839-848.Search in Google Scholar
Ismagilov, F. R., Vavilov, V. E., & Gusakov, D. V. (2019). Line-Start Permanent Magnet Synchronous Motor for Aerospace Application. In 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC 2018 (pp. 8607689-8607689).IsmagilovF. R.VavilovV. E.GusakovD. V. (2019). Line-Start Permanent Magnet Synchronous Motor for Aerospace Application. In 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference, ESARS-ITEC2018 (pp. 8607689-8607689).Search in Google Scholar
Trapanese, M., Boscaino, V., Cipriani, G., Curto, D., Di Dio, V., & Franzitta, V. (2019). A Permanent Magnet Linear Generator for the Enhancement of the Reliability of a Wave Energy Conversion System. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 66(6).TrapaneseM.BoscainoV.CiprianiG.CurtoD.Di DioV.FranzittaV. (2019). A Permanent Magnet Linear Generator for the Enhancement of the Reliability of a Wave Energy Conversion System. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 66(6).Search in Google Scholar
Cao, R., Su, E., & Lu, M. (2020). Comparative Study of Permanent Magnet Assisted Linear Switched Reluctance Motor and Linear Flux Switching Permanent Magnet Motor for Railway Transportation. IEEE Transactions on Applied Superconductivity, 30(4), 2965874.CaoR.SuE.LuM. (2020). Comparative Study of Permanent Magnet Assisted Linear Switched Reluctance Motor and Linear Flux Switching Permanent Magnet Motor for Railway Transportation. IEEE Transactions on Applied Superconductivity, 30(4), 2965874.Search in Google Scholar
Kim, C. W., Kim, J. M., Seo, S. W., Ahn, J. H., Hong, K., & Choi, J. Y. (2018). Core Loss Analysis of Permanent Magnet Linear Synchronous Generator Considering the 3-D Flux Path. IEEE Transactions on Magnetics, 54(3), 2751076.KimC. W.KimJ. M.SeoS. W.AhnJ. H.HongK.ChoiJ. Y. (2018). Core Loss Analysis of Permanent Magnet Linear Synchronous Generator Considering the 3-D Flux Path. IEEE Transactions on Magnetics, 54(3), 2751076.Search in Google Scholar
Yu, W., Hua, W., Zhang, Z., Wu, Z., Wang, P., & Xia, W. (2022). Comparative analysis of AC copper loss with round copper wire and flat copper wire of high-speed stator-PM flux-switching machine. IEEE Transactions on Industry Applications, 58(6), 7131-7142.YuW.HuaW.ZhangZ.WuZ.WangP.XiaW. (2022). Comparative analysis of AC copper loss with round copper wire and flat copper wire of high-speed stator-PM flux-switching machine. IEEE Transactions on Industry Applications, 58(6), 7131-7142.Search in Google Scholar
Yu, W., Hua, W., & Zhang, Z. (2022). Cooling Analysis of High-Speed Stator-Permanent Magnet Flux-Switching Machines for Fuel-Cell Electric Vehicle Compressor. IEEE Transactions on Vehicular Technology, 71(1).YuW.HuaW.ZhangZ. (2022). Cooling Analysis of High-Speed Stator-Permanent Magnet Flux-Switching Machines for Fuel-Cell Electric Vehicle Compressor. IEEE Transactions on Vehicular Technology, 71(1).Search in Google Scholar
Sirimanna, S., Balachandran, T., & Haran, K. (2022). A Review on Magnet Loss Analysis, Validation, Design Considerations, and Reduction Strategies in Permanent Magnet Synchronous Motors. Energies, 15(17), 1-16.SirimannaS.BalachandranT.HaranK. (2022). A Review on Magnet Loss Analysis, Validation, Design Considerations, and Reduction Strategies in Permanent Magnet Synchronous Motors. Energies, 15(17), 1-16.Search in Google Scholar