This work is licensed under the Creative Commons Attribution 4.0 International License.
Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T., & Poon, A. F. (2016). Ancestral reconstruction. PLoS Computational Biology, 12(7), e1004763. https://doi.org/10.1371/journal.pcbi.1004763JoyJ. B.LiangR. H.McCloskeyR. M.NguyenT.PoonA. F. (2016). Ancestral reconstruction. PLoS Computational Biology, 12(7), e1004763. https://doi.org/10.1371/journal.pcbi.1004763Search in Google Scholar
Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: New computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389–403. https://doi.org/10.1038/s41576-019-0122-6EraslanG.AvsecŽ.GagneurJ.TheisF. J. (2019). Deep learning: New computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389–403. https://doi.org/10.1038/s41576-019-0122-6Search in Google Scholar
Zhang, Y., Cheng, L., Chen, G., & Alghazzawi, D. (2024). Evolutionary computation in bioinformatics: A survey. Neurocomputing, 591, 127758. https://doi.org/10.1016/j.neucom.2024.127758ZhangY.ChengL.ChenG.AlghazzawiD. (2024). Evolutionary computation in bioinformatics: A survey. Neurocomputing, 591, 127758. https://doi.org/10.1016/j.neucom.2024.127758Search in Google Scholar
Dewar, A. E., Belcher, L. J., & West, S. A. (2025). A phylogenetic approach to comparative genomics. Nature Reviews Genetics, 1–11. https://doi.org/10.1038/s41576-024-00803-0DewarA. E.BelcherL. J.WestS. A. (2025). A phylogenetic approach to comparative genomics. Nature Reviews Genetics, 1–11. https://doi.org/10.1038/s41576-024-00803-0Search in Google Scholar
Helmy, M., Smith, D., & Selvarajoo, K. (2020). Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic Engineering Communications, 11, e00149. https://doi.org/10.1016/j.mec.2020.e00149HelmyM.SmithD.SelvarajooK. (2020). Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic Engineering Communications, 11, e00149. https://doi.org/10.1016/j.mec.2020.e00149Search in Google Scholar
de Rosa, G. H., & Papa, J. P. (2019). Soft-tempering deep belief networks parameters through genetic programming. Journal of Artificial Intelligence and Systems, 1(1), 43–59. https://doi.org/10.33969/AIS.2019.11003de RosaG. H.PapaJ. P. (2019). Soft-tempering deep belief networks parameters through genetic programming. Journal of Artificial Intelligence and Systems, 1(1), 43–59. https://doi.org/10.33969/AIS.2019.11003Search in Google Scholar
Sakarya, O., Kosik, K. S., & Oakley, T. H. (2008). Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics, 24(5), 606–612. https://doi.org/10.1093/bioinformatics/btn005SakaryaO.KosikK. S.OakleyT. H. (2008). Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics, 24(5), 606–612. https://doi.org/10.1093/bioinformatics/btn005Search in Google Scholar
Needham, C. J., Bradford, J. R., Bulpitt, A. J., & Westhead, D. R. (2007). A primer on learning in Bayesian networks for computational biology. PLoS Computational Biology, 3(8), e129. https://doi.org/10.1371/journal.pcbi.0030129NeedhamC. J.BradfordJ. R.BulpittA. J.WestheadD. R. (2007). A primer on learning in Bayesian networks for computational biology. PLoS Computational Biology, 3(8), e129. https://doi.org/10.1371/journal.pcbi.0030129Search in Google Scholar
Gupta, S., Janu, N., Nawal, M., & Goswami, A. (2025). Genomics and machine learning: ML approaches, future directions and challenges in genomics. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 437–457. https://doi.org/10.1002/9781394268832.ch20GuptaS.JanuN.NawalM.GoswamiA. (2025). Genomics and machine learning: ML approaches, future directions and challenges in genomics. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 437–457. https://doi.org/10.1002/9781394268832.ch20Search in Google Scholar
Bohrer, J. D. S., & Dorn, M. (2024). Enhancing classification with hybrid feature selection: A multi-objective genetic algorithm for high-dimensional data. Expert Systems with Applications, 224, 124518. https://doi.org/10.1016/j.eswa.2024.124518BohrerJ. D. S.DornM. (2024). Enhancing classification with hybrid feature selection: A multi-objective genetic algorithm for high-dimensional data. Expert Systems with Applications, 224, 124518. https://doi.org/10.1016/j.eswa.2024.124518Search in Google Scholar
Amiriebrahimabadi, M., & Mansouri, N. (2024). A comprehensive survey of feature selection techniques based on whale optimization algorithm. Multimedia Tools and Applications, 83(16), 47775–47846. https://doi.org/10.1007/s11042-023-17329-yAmiriebrahimabadiM.MansouriN. (2024). A comprehensive survey of feature selection techniques based on whale optimization algorithm. Multimedia Tools and Applications, 83(16), 47775–47846. https://doi.org/10.1007/s11042-023-17329-ySearch in Google Scholar
Yang, S., Guo, C., Meng, D., Guo, Y., Guo, Y., Pan, L., & Zhu, S. P. (2024). MECSBO: Multi-strategy enhanced circulatory system-based optimisation algorithm for global optimisation and reliability-based design optimisation problems. IET Collaborative Intelligent Manufacturing, 6(2), e12097. https://doi.org/10.1049/cim2.12097YangS.GuoC.MengD.GuoY.GuoY.PanL.ZhuS. P. (2024). MECSBO: Multi-strategy enhanced circulatory system-based optimisation algorithm for global optimisation and reliability-based design optimisation problems. IET Collaborative Intelligent Manufacturing, 6(2), e12097. https://doi.org/10.1049/cim2.12097Search in Google Scholar
Feng, B., Zhou, L., & Tang, J. (2017). Ancestral genome reconstruction on whole genome level. Current Genomics, 18(4), 306–315. https://doi.org/10.2174/1389202918666170307120943FengB.ZhouL.TangJ. (2017). Ancestral genome reconstruction on whole genome level. Current Genomics, 18(4), 306–315. https://doi.org/10.2174/1389202918666170307120943Search in Google Scholar
Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1), 379–406. https://doi.org/10.1146/annurev-ecolsys-102209-144621BeaumontM. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41(1), 379–406. https://doi.org/10.1146/annurev-ecolsys-102209-144621Search in Google Scholar
Washburn, J. D., Schnable, J. C., Conant, G. C., Brutnell, T. P., Shao, Y., Zhang, Y., … & Pires, J. C. (2017). Genome-guided phylo-transcriptomic methods and the nuclear phylogenetic tree of the Paniceae grasses. Scientific Reports, 7(1), 13528. https://doi.org/10.1038/s41598-017-13236-zWashburnJ. D.SchnableJ. C.ConantG. C.BrutnellT. P.ShaoY.ZhangY.PiresJ. C. (2017). Genome-guided phylo-transcriptomic methods and the nuclear phylogenetic tree of the Paniceae grasses. Scientific Reports, 7(1), 13528. https://doi.org/10.1038/s41598-017-13236-zSearch in Google Scholar
Leung, M. K., Delong, A., Alipanahi, B., & Frey, B. J. (2015). Machine learning in genomic medicine: A review of computational problems and data sets. Proceedings of the IEEE, 104(1), 176–197. https://doi.org/10.1109/JPROC.2015.2494198LeungM. K.DelongA.AlipanahiB.FreyB. J. (2015). Machine learning in genomic medicine: A review of computational problems and data sets. Proceedings of the IEEE, 104(1), 176–197. https://doi.org/10.1109/JPROC.2015.2494198Search in Google Scholar
Koumakis, L. (2020). Deep learning models in genomics: Are we there yet? Computational and Structural Biotechnology Journal, 18, 1466–1473. https://doi.org/10.1016/j.csbj.2020.06.017KoumakisL. (2020). Deep learning models in genomics: Are we there yet?Computational and Structural Biotechnology Journal, 18, 1466–1473. https://doi.org/10.1016/j.csbj.2020.06.017Search in Google Scholar
Rostami, M., Berahmand, K., Nasiri, E., & Forouzandeh, S. (2021). Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence, 100, 104210. https://doi.org/10.1016/j.engappai.2021.104210RostamiM.BerahmandK.NasiriE.ForouzandehS. (2021). Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence, 100, 104210. https://doi.org/10.1016/j.engappai.2021.104210Search in Google Scholar
Rika, D., Sholomon, D., David, E., & Netanyahu, N. S. (2019, July). A novel hybrid scheme using genetic algorithms and deep learning for the reconstruction of Portuguese tile panels. Proceedings of the Genetic and Evolutionary Computation Conference, 1319–1327. https://doi.org/10.1145/3321707.332182RikaD.SholomonD.DavidE.NetanyahuN. S. (2019, July). A novel hybrid scheme using genetic algorithms and deep learning for the reconstruction of Portuguese tile panels. Proceedings of the Genetic and Evolutionary Computation Conference, 1319–1327. https://doi.org/10.1145/3321707.332182Search in Google Scholar
Hafiz, R., & Saeed, S. (2024). Hybrid whale algorithm with evolutionary strategies and filtering for high-dimensional optimization: Application to microarray cancer data. PLoS ONE, 19(3), e0295643. https://doi.org/10.1371/journal.pone.0295643HafizR.SaeedS. (2024). Hybrid whale algorithm with evolutionary strategies and filtering for high-dimensional optimization: Application to microarray cancer data. PLoS ONE, 19(3), e0295643. https://doi.org/10.1371/journal.pone.0295643Search in Google Scholar
Huang, S., Liu, C., & Goda, K. (2023). Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action. Chinese Journal of Geotechnical Engineering, 45(2), 336–344.HuangS.LiuC.GodaK. (2023). Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action. Chinese Journal of Geotechnical Engineering, 45(2), 336–344.Search in Google Scholar