YOLOv8-A: Enhanced Lightweight Object Detection with Nonlinear Feature Fusion and Mathematical Optimization for Precision Small Target Detection in Industrial Silicon Melting Processes
This work is licensed under the Creative Commons Attribution 4.0 International License.
Carion, N., et al. (2020). End-to-end object detection with transformers. European Conference on Computer Vision, 213-229. DOI: 10.1007/978-3-030-58452-8_13bCarionN. (2020). End-to-end object detection with transformers. European Conference on Computer Vision, 213-229. DOI:10.1007/978-3-030-58452-8_13Open DOISearch in Google Scholar
Feigelson, R. S. (2022). Crystal Growth History: Theory and Melt Growth Processes. Journal of Crystal Growth, 594, 126800. DOI: 10.1016/j.jcrysgro.2022.126800FeigelsonR. S. (2022). Crystal Growth History: Theory and Melt Growth Processes. Journal of Crystal Growth, 594, 126800. DOI:10.1016/j.jcrysgro.2022.126800Open DOISearch in Google Scholar
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580–587. DOI: 10.1109/CVPR.2014.81GirshickR.DonahueJ.DarrellT.MalikJ. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580–587. DOI:10.1109/CVPR.2014.81Open DOISearch in Google Scholar
Han, K., Wang, Y., Zhang, Q., et al. (2020). GhostNet: More Features from Cheap Operations. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1580-1589. DOI:10.1109/CVPR42600.2020.00165HanK.WangY.ZhangQ. (2020). GhostNet: More Features from Cheap Operations. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1580-1589. DOI:10.1109/CVPR42600.2020.00165Open DOISearch in Google Scholar
Hussain, M. (2024). YOLOv1 to v8: Unveiling Each Variant – A Comprehensive Review ofYOLO. IEEE Access, 12, 42816-42833. DOI: 10.1109/ACCESS.2024.3060000HussainM. (2024). YOLOv1 to v8: Unveiling Each Variant – A Comprehensive Review ofYOLO. IEEE Access, 12, 42816-42833. DOI:10.1109/ACCESS.2024.3060000Open DOISearch in Google Scholar
Jocher, G. (2020). YOLOv5: Redefining real-time object detection. arXiv preprint arXiv:2012.08255. DOI: 10.48550/arXiv.2012.08255JocherG. (2020). YOLOv5: Redefining real-time object detection.arXiv preprint arXiv:2012.08255. DOI:10.48550/arXiv.2012.08255Open DOISearch in Google Scholar
Li, N., Ye, T., Zhou, Z., & Zhang, P. (2024). Enhanced YOLOv8 with BiFPN-SimAM for Precise Defect Detection in Miniature Capacitors. Applied Sciences, 14(1), 429. DOI: 10.3390/app14010429LiN.YeT.ZhouZ.ZhangP. (2024). Enhanced YOLOv8 with BiFPN-SimAM for Precise Defect Detection in Miniature Capacitors. Applied Sciences, 14(1), 429. DOI:10.3390/app14010429Open DOISearch in Google Scholar
Lin, B., Li, X., & Chen, Y. (2022). Slim-neck by GSConv: A Better Design Paradigm of Detector Architectures for Autonomous Vehicles. arXiv preprint arXiv:2206.02424. DOI:10.48550/arXiv.2206.02424LinB.LiX.ChenY. (2022). Slim-neck by GSConv: A Better Design Paradigm of Detector Architectures for Autonomous Vehicles.arXiv preprint arXiv:2206.02424.DOI:10.48550/arXiv.2206.02424Open DOISearch in Google Scholar
Liu, D. (2015). Direct-drawn Monocrystalline Silicon Thermal System Modeling. In CZ Silicon Single Crystal Growth Modeling and Control. Beijing, China: Science Press, Chapter 4, pp. 68–73.LiuD. (2015). Direct-drawn Monocrystalline Silicon Thermal System Modeling. In CZ Silicon Single Crystal Growth Modeling and Control. Beijing, China: Science Press, Chapter 4, pp. 68–73.Search in Google Scholar
Liu, X., Zhang, S., & Wang, M. (2023). Adaptive attention for small object detection in remote sensing images. Journal of Remote Sensing Technology, 34(4), 1123-1134. DOI: 10.1007/s13320-023-0654-9LiuX.ZhangS.WangM. (2023). Adaptive attention for small object detection in remote sensing images. Journal of Remote Sensing Technology, 34(4), 1123-1134. DOI:10.1007/s13320-023-0654-9Open DOISearch in Google Scholar
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. DOI: 10.1109/CVPR.2016.91RedmonJ.DivvalaS.GirshickR.FarhadiA. (2016). You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. DOI:10.1109/CVPR.2016.91Open DOISearch in Google Scholar
Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 10781-10790. DOI:10.1109/CVPR42600.2020.01078TanM.PangR.LeQ. V. (2020). EfficientDet: Scalable and Efficient Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 10781-10790. DOI:10.1109/CVPR42600.2020.01078Open DOISearch in Google Scholar
Wang, C., et al. (2022). YOLOv7: Trainable Bag of Freebies for real-time object detectors. arXiv preprint arXiv:2207.02696. DOI: 10.48550/arXiv.2207.02696WangC. (2022). YOLOv7: Trainable Bag of Freebies for real-time object detectors.arXiv preprint arXiv:2207.02696. DOI:10.48550/arXiv.2207.02696Open DOISearch in Google Scholar
Wang, J., Zhang, X., & Zhao, Y. (2023). Dynamic Upsampling in YOLOv8 for Small Target Detection. IEEE Transactions on Image Processing, 32(7), 4561-4574. DOI: 10.1109/TIP.2023.3267890WangJ.ZhangX.ZhaoY. (2023). Dynamic Upsampling in YOLOv8 for Small Target Detection. IEEE Transactions on Image Processing, 32(7), 4561-4574. DOI:10.1109/TIP.2023.3267890Open DOISearch in Google Scholar
Yang, C., et al. (2023). Real-time Detection of Industrial Defects Using Transformer-Based Architectures. Robotics and Automation Letters, 8(4), 1392–1405. DOI: 10.1109/LRA.2023.3245678YangC. (2023). Real-time Detection of Industrial Defects Using Transformer-Based Architectures. Robotics and Automation Letters, 8(4), 1392–1405. DOI:10.1109/LRA.2023.3245678Open DOISearch in Google Scholar
Yang, Z., Cheng, Y., & Huang, X. (2023). Research on the direct pull method single crystal silicon dislocation detection model based on improved YOLOv5 algorithm. Applied Optics, 44(5), 1022-1029. DOI: 10.1364/AO.44.005022YangZ.ChengY.HuangX. (2023). Research on the direct pull method single crystal silicon dislocation detection model based on improved YOLOv5 algorithm. Applied Optics, 44(5), 1022-1029. DOI:10.1364/AO.44.005022Open DOISearch in Google Scholar
Zhang, J., Liu, D., & Tang, Q.-W. (2022). The CNN deep learning-based melting process prediction of Czochralski monocrystalline silicon. IEEE Access, 10, 41986–41992. DOI:10.1109/ACCESS.2022.3160000ZhangJ.LiuD.TangQ.-W. (2022). The CNN deep learning-based melting process prediction of Czochralski monocrystalline silicon. IEEE Access, 10, 41986–41992. DOI:10.1109/ACCESS.2022.3160000Open DOISearch in Google Scholar
Zhao, Y., & Cheng, D. (2011). Visual-based detection and monitoring of single crystal growth diameter. Manufacturing Automation, 7, 22-25.DOI: 10.1109/icdma.2011.343ZhaoY.ChengD. (2011). Visual-based detection and monitoring of single crystal growth diameter. Manufacturing Automation, 7, 22-25DOI:10.1109/icdma.2011.343.Open DOISearch in Google Scholar
Zhao, Y., & Wang, X. (2018). Research on temperature measurement technology for Czochralski crystal growth based on aperture pattern recognition. Journal of Sensing Technology, 31(4), 573-578.ZhaoY.WangX. (2018). Research on temperature measurement technology for Czochralski crystal growth based on aperture pattern recognition. Journal of Sensing Technology, 31(4), 573-578.Search in Google Scholar
Zhao, Y., Cui, Y., & Wang, Z. (2023). Improved YOLOv5 Based on CBAM and BiFPN for Rice Pest and Disease Detection. International Conference on Computer, Internet of Things, and Smart City (CIoTSC), 29–36. DOI: 10.1109/CIoTSC.2023.3245680ZhaoY.CuiY.WangZ. (2023). Improved YOLOv5 Based on CBAM and BiFPN for Rice Pest and Disease Detection. International Conference on Computer, Internet of Things, and Smart City (CIoTSC), 29–36. DOI:10.1109/CIoTSC.2023.3245680Open DOISearch in Google Scholar
Zhao, Z., Wang, P., & Xie, H. (2023). Improved Small-Object Detection with YOLOv8 Using BiFPN and GhostNet. Applied Sciences, 14(3), 1095-1105. DOI: 10.3390/app14031095ZhaoZ.WangP.XieH. (2023). Improved Small-Object Detection with YOLOv8 Using BiFPN and GhostNet. Applied Sciences, 14(3), 1095-1105. DOI:10.3390/app14031095Open DOISearch in Google Scholar
Zheng, X., Liu, Y., & Chen, Z. (2024). YOLOv8 for small target detection in the silicon melting process. Journal of Industrial Automation and Vision Systems, 35(4), 295-310.ZhengX.LiuY.ChenZ. (2024). YOLOv8 for small target detection in the silicon melting process. Journal of Industrial Automation and Vision Systems, 35(4), 295-310.Search in Google Scholar
Wang, Y., Liu, H., & Chen, X. (2024). Efficient small object detection using multi-scale refinement networks. International Journal of Computer Vision, 50(1), 45-61. DOI: 10.1007/s11263-024-01678-2WangY.LiuH.ChenX. (2024). Efficient small object detection using multi-scale refinement networks. International Journal of Computer Vision, 50(1), 45-61. DOI:10.1007/s11263-024-01678-2Open DOISearch in Google Scholar
Zhao, Y., & Cheng, D. (2023). A Study on High-Precision Detection in Industrial Inspection Using Enhanced YOLO Models. Journal of Advanced Computational Applications, 12(4), 145-167. DOI: 10.1016/j.aca.2023.145167ZhaoY.ChengD. (2023). A Study on High-Precision Detection in Industrial Inspection Using Enhanced YOLO Models. Journal of Advanced Computational Applications, 12(4), 145-167. DOI:10.1016/j.aca.2023.145167Open DOISearch in Google Scholar
Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts. International Conference on Learning Representations (ICLR). DOI: 10.48550/arXiv.1608.03983LoshchilovI.HutterF. (2017). SGDR: Stochastic Gradient Descent with Warm Restarts.International Conference on Learning Representations (ICLR). DOI:10.48550/arXiv.1608.03983Open DOISearch in Google Scholar
Zhao, Y., et al. (2023). Enhanced Feature Fusion for Lightweight Object Detection in Industrial Settings. Journal of Industrial AI Research, 10(2), 220-235.ZhaoY. (2023). Enhanced Feature Fusion for Lightweight Object Detection in Industrial Settings. Journal of Industrial AI Research, 10(2), 220-235.Search in Google Scholar
Yang, C., et al. (2023). Real-Time Detection of Industrial Defects Using Transformer-Based Architectures. Robotics and Automation Letters, 8(4), 1392–1405. DOI: 10.1109/LRA.2023.3245678YangC. (2023). Real-Time Detection of Industrial Defects Using Transformer-Based Architectures. Robotics and Automation Letters, 8(4), 1392–1405. DOI:10.1109/LRA.2023.3245678Open DOISearch in Google Scholar
Jocher, G. (2020). YOLOv5: Redefining Real-Time Object Detection. arXiv preprint arXiv:2012.08255. DOI: 10.48550/arXiv.2012.08255JocherG. (2020). YOLOv5: Redefining Real-Time Object Detection.arXiv preprint arXiv:2012.08255. DOI:10.48550/arXiv.2012.08255Open DOISearch in Google Scholar
Liu, X., Zhao, Y., & Wang, J. (2023). Edge-Optimized YOLO for Real-Time Defect Detection. Advanced Robotics and Automation, 19(2), 102-118.LiuX.ZhaoY.WangJ. (2023). Edge-Optimized YOLO for Real-Time Defect Detection. Advanced Robotics and Automation, 19(2), 102-118.Search in Google Scholar