This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Briot, J. P., & Pachet, F. (2020). Deep learning for music generation: challenges and directions. Neural Computing and Applications, 32(4), 981-993.BriotJ. P.PachetF. (2020). Deep learning for music generation: challenges and directions. Neural Computing and Applications, 32(4), 981-993.Search in Google Scholar
Herremans, D., Chuan, C. H., & Chew, E. (2017). A functional taxonomy of music generation systems. ACM Computing Surveys (CSUR), 50(5), 1-30.HerremansD.ChuanC. H.ChewE. (2017). A functional taxonomy of music generation systems. ACM Computing Surveys (CSUR), 50(5), 1-30.Search in Google Scholar
Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve, G., … & Défossez, A. (2024). Simple and controllable music generation. Advances in Neural Information Processing Systems, 36.CopetJ.KreukF.GatI.RemezT.KantD.SynnaeveG.DéfossezA. (2024). Simple and controllable music generation. Advances in Neural Information Processing Systems, 36.Search in Google Scholar
Mao, H. H., Shin, T., & Cottrell, G. (2018, January). DeepJ: Style-specific music generation. In 2018 IEEE 12th International Conference on Semantic Computing (ICSC) (pp. 377-382). IEEE.MaoH. H.ShinT.CottrellG. (2018, January). DeepJ: Style-specific music generation. In 2018 IEEE 12th International Conference on Semantic Computing (ICSC) (pp. 377-382). IEEE.Search in Google Scholar
Civit, M., Civit-Masot, J., Cuadrado, F., & Escalona, M. J. (2022). A systematic review of artificial intelligence-based music generation: Scope, applications, and future trends. Expert Systems with Applications, 209, 118190.CivitM.Civit-MasotJ.CuadradoF.EscalonaM. J. (2022). A systematic review of artificial intelligence-based music generation: Scope, applications, and future trends. Expert Systems with Applications, 209, 118190.Search in Google Scholar
Ji, S., Yang, X., & Luo, J. (2023). A survey on deep learning for symbolic music generation: Representations, algorithms, evaluations, and challenges. ACM Computing Surveys, 56(1), 1-39.JiS.YangX.LuoJ. (2023). A survey on deep learning for symbolic music generation: Representations, algorithms, evaluations, and challenges. ACM Computing Surveys, 56(1), 1-39.Search in Google Scholar
Yadav, P. S., Khan, S., Singh, Y. V., Garg, P., & Singh, R. S. (2022). A Lightweight Deep Learning-Based Approach for Jazz Music Generation in MIDI Format. Computational Intelligence and Neuroscience, 2022(1), 2140895.YadavP. S.KhanS.SinghY. V.GargP.SinghR. S. (2022). A Lightweight Deep Learning-Based Approach for Jazz Music Generation in MIDI Format. Computational Intelligence and Neuroscience, 2022(1), 2140895.Search in Google Scholar
Min, J., Liu, Z., Wang, L., Li, D., Zhang, M., & Huang, Y. (2022). Music generation system for adversarial training based on deep learning. Processes, 10(12), 2515.MinJ.LiuZ.WangL.LiD.ZhangM.HuangY. (2022). Music generation system for adversarial training based on deep learning. Processes, 10(12), 2515.Search in Google Scholar
Maduskar, A., Ladukar, A., Gore, S., & Patwari, N. (2020, February). Music generation using deep generative modelling. In 2020 International Conference on Convergence to Digital World-Quo Vadis (ICCDW) (pp. 1-4). IEEE.MaduskarA.LadukarA.GoreS.PatwariN. (2020, February). Music generation using deep generative modelling. In 2020 International Conference on Convergence to Digital World-Quo Vadis (ICCDW) (pp. 1-4). IEEE.Search in Google Scholar
Pricop, T. C., & Iftene, A. (2024). Music Generation with Machine Learning and Deep Neural Networks. Procedia Computer Science, 246, 1855-1864.PricopT. C.IfteneA. (2024). Music Generation with Machine Learning and Deep Neural Networks. Procedia Computer Science, 246, 1855-1864.Search in Google Scholar
Bhardwaj, S., Salim, S. M., Khan, T. A., & JavadiMasoudian, S. (2022, October). Automated Music Generation using Deep Learning. In 2022 International Conference Automatics and Informatics (ICAI) (pp. 193-198). IEEE.BhardwajS.SalimS. M.KhanT. A.JavadiMasoudianS. (2022, October). Automated Music Generation using Deep Learning. In 2022 International Conference Automatics and Informatics (ICAI) (pp. 193-198). IEEE.Search in Google Scholar
Mor, B., Garhwal, S., & Kumar, A. (2021). A systematic review of hidden Markov models and their applications. Archives of computational methods in engineering, 28, 1429-1448.MorB.GarhwalS.KumarA. (2021). A systematic review of hidden Markov models and their applications. Archives of computational methods in engineering, 28, 1429-1448.Search in Google Scholar
Franzese, M., & Iuliano, A. (2018). Hidden markov models. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vol. 1, pp. 753-762). Elsevier.FranzeseM.IulianoA. (2018). Hidden markov models. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Vol. 1, pp. 753-762). Elsevier.Search in Google Scholar
Grewal, J. K., Krzywinski, M., & Altman, N. (2019). Markov models—hidden Markov models. Nature methods, 16(9), 795-796.GrewalJ. K.KrzywinskiM.AltmanN. (2019). Markov models—hidden Markov models. Nature methods, 16(9), 795-796.Search in Google Scholar
Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Hidden markov model. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 81-104.AwadM.KhannaR.AwadM.KhannaR. (2015). Hidden markov model. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 81-104.Search in Google Scholar
Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598.WangK.GouC.DuanY.LinY.ZhengX.WangF. Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598.Search in Google Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.GoodfellowI.Pouget-AbadieJ.MirzaM.XuB.Warde-FarleyD.OzairS.BengioY. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.Search in Google Scholar
Gonog, L., & Zhou, Y. (2019, June). A review: generative adversarial networks. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 505-510). IEEE.GonogL.ZhouY. (2019, June). A review: generative adversarial networks. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 505-510). IEEE.Search in Google Scholar
Creswell, A., & Bharath, A. A. (2018). Inverting the generator of a generative adversarial network. IEEE transactions on neural networks and learning systems, 30(7), 1967-1974.CreswellA.BharathA. A. (2018). Inverting the generator of a generative adversarial network. IEEE transactions on neural networks and learning systems, 30(7), 1967-1974.Search in Google Scholar
Wang, C., Xu, C., Yao, X., & Tao, D. (2019). Evolutionary generative adversarial networks. IEEE Transactions on Evolutionary Computation, 23(6), 921-934.WangC.XuC.YaoX.TaoD. (2019). Evolutionary generative adversarial networks. IEEE Transactions on Evolutionary Computation, 23(6), 921-934.Search in Google Scholar
Pinheiro Cinelli, L., Araújo Marins, M., Barros da Silva, E. A., & Lima Netto, S. (2021). Variational autoencoder. In Variational Methods for Machine Learning with Applications to Deep Networks (pp. 111-149). Cham: Springer International Publishing.Pinheiro CinelliL.Araújo MarinsM.Barros da SilvaE. A.Lima NettoS. (2021). Variational autoencoder. In Variational Methods for Machine Learning with Applications to Deep Networks (pp. 111-149). Cham: Springer International Publishing.Search in Google Scholar
Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017, July). Grammar variational autoencoder. In International conference on machine learning (pp. 1945-1954). PMLR.KusnerM. J.PaigeB.Hernández-LobatoJ. M. (2017, July). Grammar variational autoencoder. In International conference on machine learning (pp. 1945-1954). PMLR.Search in Google Scholar
Hou, X., Shen, L., Sun, K., & Qiu, G. (2017, March). Deep feature consistent variational autoencoder. In 2017 IEEE winter conference on applications of computer vision (WACV) (pp. 1133-1141). IEEE.HouX.ShenL.SunK.QiuG. (2017, March). Deep feature consistent variational autoencoder. In 2017 IEEE winter conference on applications of computer vision (WACV) (pp. 1133-1141). IEEE.Search in Google Scholar
Shao, H., Yao, S., Sun, D., Zhang, A., Liu, S., Liu, D., … & Abdelzaher, T. (2020, November). Controlvae: Controllable variational autoencoder. In International conference on machine learning (pp. 8655-8664). PMLR.ShaoH.YaoS.SunD.ZhangA.LiuS.LiuD.AbdelzaherT. (2020, November). Controlvae: Controllable variational autoencoder. In International conference on machine learning (pp. 8655-8664). PMLR.Search in Google Scholar
Alejandro Moreno Sanfélix, F. Consuelo Gragera Peña & Miguel A. Jaramillo Morán. (2024). Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz. Sustainability(22), 10115-10115.SanfélixAlejandro MorenoPeñaF. Consuelo GrageraMiguelA. Jaramillo Morán (2024). Predictive Model of Pedestrian Crashes Using Markov Chains in the City of Badajoz. Sustainability(22),10115-10115.Search in Google Scholar
George Datseris & Joel Hobson.(2019). MIDI. jl: Simple and intuitive handling of MIDI data.. J. Open Source Software(35), 1166.DatserisGeorgeHobsonJoel(2019). MIDI. jl: Simple and intuitive handling of MIDI data.. J. Open Source Software(35),1166.Search in Google Scholar
Roger Thornton Dean & Marcus Thomas Pearce. (2016). Algorithmically-generated Corpora that use Serial Compositional Principles Can Contribute to the Modeling of Sequential Pitch Structure in Non-tonal Music. Empirical Musicology Review(1), 27-46.DeanRoger ThorntonPearceMarcus Thomas (2016). Algorithmically-generated Corpora that use Serial Compositional Principles Can Contribute to the Modeling of Sequential Pitch Structure in Non-tonal Music. Empirical Musicology Review(1),27-46.Search in Google Scholar