Mixed-Mode Oscillations Based on Complex Canard Explosion in a Fractional-Order Fitzhugh-Nagumo Model.
, und
10. Nov. 2020
Über diesen Artikel
Online veröffentlicht: 10. Nov. 2020
Seitenbereich: 239 - 256
Eingereicht: 19. Jan. 2020
Akzeptiert: 24. Feb. 2020
DOI: https://doi.org/10.2478/amns.2020.2.00047
Schlüsselwörter
© 2020 René Lozi et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Some canard explosion parameter sub-segments: CEPS=[(b¯i,α¯i) (b¯i+2×10−13,α¯i+10−13)]CEPS = [({\bar b_i},{\bar \alpha _i})\;({\bar b_i} + 2 \times {10^{- 13}},{\bar \alpha _i} + {10^{- 13}})] _ i = 1, 2,___, 13, with their corresponding NSAO, and tf, determined using GLCESA as both parameters b and α are varied_
14 | 702.59 | 0.9460520040915 | 0.8078959918168 |
13 | 669.43 | 0.9462002574928 | 0.8075994850142 |
12 | 637.49 | 0.9463712718829 | 0.8072574562340 |
11 | 609.12 | 0.9465701755015 | 0.8068596489968 |
10 | 955.08 | 0.9468114549302 | 0.8063770901394 |
9 | 500.67 | 0.9470807229186 | 0.8058385541626 |
8 | 469.37 | 0.9474164241791 | 0.8051671516416 |
7 | 436.78 | 0.9478315727039 | 0.8043368545920 |
6 | 365.56 | 0.9483577759722 | 0.8032844480554 |
5 | 332.4 | 0.9490323331705 | 0.8019353336588 |
4 | 300.35 | 0.9499488046301 | 0.8001023907396 |
3 | 227.11 | 0.9512805068416 | 0.7974389863166 |
2 | 189.64 | 0.9532285469108 | 0.7935429061782 |
1 | 156.56 | 0.9564716090280 | 0.7870567819438 |
0 | 204.82 | 0.9608101829226 | 0.7783796341546 |