A Crank-Nicolson Approximation for the time Fractional Burgers Equation
und
20. Aug. 2020
Über diesen Artikel
Online veröffentlicht: 20. Aug. 2020
Seitenbereich: 177 - 184
Eingereicht: 27. Juli 2019
Akzeptiert: 29. Juli 2019
DOI: https://doi.org/10.2478/amns.2020.2.00023
Schlüsselwörter
© 2020 M. Onal et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

The error norms L2 and L∞ of the time fractional Burgers equation problem using the Crank Nicolson finite difference method with ν = 1_0, Δt = 0_00025 and tf =1 for various values of M
22.64087326 | 5.44483424 | 1.22007333 | 0.16846258 | |
30.49445082 | 7.70051177 | 1.72552915 | 0.23826679 |
Comparison of results at tf = 1_0 for γ = 0_5, Δt = 0_0001, ν = 1_0 and various mesh sizes
0.81667090 | 0.23594859 | 0.09215464 | 0.05901177 | |
1.13678094 | 0.32086237 | 0.12245871 | 0.09790576 |
A comparison of the errors for Example 1 at tf =1
Present | [ | Present | [ | Present | [ | |
---|---|---|---|---|---|---|
1.22007333 | 1.224329 | 0.16846258 | 0.177703 | 0.04239382 | 0.052299 | |
1.72552915 | 1.730469 | 0.23826679 | 0.253053 | 0.05996900 | 0.076541 |
The error norms L2 and L∞ of Example 1 for N=120, tf = 1_0, Δt = 0_00025 for different values of γ
0.02411976 | 0.02490518 | 0.02669547 | 0.02579288 | |
0.03409905 | 0.03521115 | 0.03774592 | 0.03646791 |
Comparison of results at tf = 1_0 for ν = 1, Δx = 0_025 and various time steps
Δ | Δ | Δ | Δ | |
---|---|---|---|---|
0.08344454 | 0.22252258 | 0.45497994 | 0.92040447 | |
0.23648323 | 0.59722584 | 1.19848941 | 2.40107923 |
The error norms L2 and L∞ of Example 1 for γ=0_5, Δt=0_00025, tf =1_0, N=40 and various values of ν
0.41761157 | 0.51259161 | 1.03928112 | 2.13880314 | 6.46231244 | |
0.59040780 | 0.72342731 | 1.51280185 | 4.65707275 | 22.95302718 |
Comparison of results at tf = 1_0 for ν=1, N = 40 and various time steps
Δ | Δ | Δ | Δ | Δ | Δ | |
---|---|---|---|---|---|---|
0.09215464 | 0.16142590 | 0.27906906 | 0.51583267 | 1.22775834 | 2.41506007 | |
0.12245871 | 0.24577898 | 0.47478371 | 0.93280810 | 2.30696715 | 4.59744900 |