Analytical and approximate solutions of Fractional Partial Differential-Algebraic Equations
Online veröffentlicht: 30. März 2020
Seitenbereich: 109 - 120
Eingereicht: 12. Mai 2019
Akzeptiert: 29. Juli 2019
DOI: https://doi.org/10.2478/amns.2020.1.00011
Schlüsselwörter
© 2020 Hatıra Günerhan et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
In the past several years ago, various methods have been proposed to obtain the numerical solution of partial differential-algebraic equations [2], [7], [11], [12], [13], [14], [15], [16]. In this study, we consider the following system of partial differential-algebraic equations of fractional order
We give some basic definitions and properties of the fractional calculus theory which are used further in this paper.
A real function
A function
The Riemann-Liouville fractional integral operator of the order
Properties of the operator
For
The fractional derivative of
Differential Transform Method (DTM) is an analytic method based on the Taylor series expansion which constructs an analytical solution in the form of a polynomial. The traditional high order Taylor series method requires symbolic computation. However, the FDTM obtains a polynomial series solution using an iterative procedure. The proposed method is based on the combination of the classical two-dimensional FDTM and generalized Taylor’s
Table 1
formula. Consider a function of two variables The operations for the two-dimensional differential transform methodTransformed function Original function
In the case of
Then, the fractional differential transform
(10)
becomes;
Here, the fractional differential transform method will be applied for solving the fractional partial differential-algebraic equation.
0.01 | 0.01 | 0.00008959719941 | 0.00009662911415 | 0.0000990049833 | 0.00009900498337 |
0.02 | 0.02 | 0.0003431068324 | 0.0003776380166 | 0.0003920794694 | 0.0003920794693 |
0.03 | 0.03 | 0.0007472332426 | 0.0008326326273 | 0.0008734009802 | 0.0008734009802 |
0.04 | 0.04 | 0.001293179864 | 0.001453053708 | 0.001537263103 | 0.001537263103 |
0.05 | 0.05 | 0.001974225181 | 0.002231408442 | 0.002378073561 | 0.002378073561 |
0.06 | 0.06 | 0.002784918905 | 0.003160962963 | 0.003390352321 | 0.003390352321 |
0.07 | 0.07 | 0.003720686720 | 0.004235572371 | 0.004568729718 | 0.004568729718 |
0.08 | 0.08 | 0.004777600641 | 0.005449572303 | 0.005907944618 | 0.005907944617 |
0.09 | 0.09 | 0.005952231651 | 0.006797703573 | 0.007402842601 | 0.007402842601 |
0.1 | 0.1 | 0.007241548560 | 0.008275056651 | 0.009048374181 | 0.009048374180 |
0.01 | 0.01 | 0.0000958378902 | 0.0000985749886 | 0.00009950124792 | 0.0000995012479 |
0.02 | 0.02 | 0.0003768305937 | 0.0003904880649 | 0.0003960199335 | 0.0003960199335 |
0.03 | 0.03 | 0.0008368543404 | 0.0008711844260 | 0.0008866007456 | 0.0008866007456 |
0.04 | 0.04 | 0.001471463303 | 0.001536815144 | 0.001568317877 | 0.001568317877 |
0.05 | 0.05 | 0.001974225181 | 0.002231408442 | 0.002378073561 | 0.002378073561 |
0.06 | 0.06 | 0.003250122011 | 0.003409338065 | 0.003493603921 | 0.003493603921 |
0.07 | 0.07 | 0.004387993961 | 0.004610074086 | 0.004731466540 | 0.004731466540 |
0.08 | 0.08 | 0.00568786 | 0.005983322378 | 0.006149052410 | 0.006149052411 |
0.09 | 0.09 | 0.007147172212 | 0.007526404232 | 0.004443579603 | 0.004443579603 |
0.1 | 0.1 | 0.008763494580 | 0.009236753030 | 0.0095412294245 | 0.0095412294245 |
0.01 | 0.01 | 0.0000099833416 | 0.00000316175064 | 9.99983333 · 10−7 | 9.999833334 · 10−7 |
0.02 | 0.02 | 0.0000563801691 | 0.00002126315673 | 0.00000799946668 | 0.00000799946667 |
0.03 | 0.03 | 0.0001551063182 | 0.00006481973859 | 0.00002699595018 | 0.00002699595018 |
0.04 | 0.04 | 0.0003178709294 | 0.0001429176157 | 0.00006398293469 | 0.00006398293470 |
0.05 | 0.05 | 0.0005543701518 | 0.0002638505172 | 0.0001249479232 | 0.0001249479232 |
0.06 | 0.06 | 0.0008730245614 | 0.0004353631002 | 0.0002158704233 | 0.0002158704233 |
0.07 | 0.07 | 0.001281346113 | 0.0006647804520 | 0.0003427199520 | 0.0003427199520 |
0.08 | 0.08 | 0.001786153808 | 0.0009590878739 | 0.0005114540415 | 0.0005114540414 |
0.09 | 0.09 | 0.002393713674 | 0.001324984549 | 0.0007280162485 | 0.0007280162485 |
0.1 | 0.1 | 0.003109835929 | 0.001768921863 | 0.0009983341664 | 0.0009983341665 |
Fig. 1
Exact solution of

Fig. 2
Values of

Fig. 3
Values of

Fig. 4
Values of

Fig. 5
Exact solution of

Fig. 6
Values of

Fig. 7
Values of

Fig. 8
Values of

Fig. 9
Exact solution of

Fig. 10
Values of

Fig. 11
Values of

Fig. 12
Values of

The generalized differential transformation method displayed in this work is an effective method for the numerical solution of a fractional partial differential-algebraic equation system. With full solutions, approximate solutions collected by the GDTM were compared to shapes and charts. On the other hand, the results are quite reliable for solving this problem. The exact closed-form solution was obtained for all the examples presented in this paper. FDTM offers an excellent opportunity for future research. As a result of this comparison, it is seen that the solutions obtained by the generalized differential transformation method are harmonious with the full solutions.