Study on energy-saving thermal insulation effect of high-temperature steam pipelines in thermal power plants using nanoporous aerogel super insulation technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Marchi, B., & Zanoni, S. (2017). Supply chain management for improved energy efficiency: Review and opportunities. Energies, 10(10), 1618.MarchiB. & ZanoniS. (2017). Supply chain management for improved energy efficiency: Review and opportunities. Energies, 10(10), 1618.Search in Google Scholar
Zhang, Y., Sun, L., & He, C. (2022). Flow induced vibration investigation of a main steam pipe suffering from high temperature steam flow. Progress in Nuclear Energy, 143, 104040.ZhangY.SunL. & HeC. (2022). Flow induced vibration investigation of a main steam pipe suffering from high temperature steam flow. Progress in Nuclear Energy, 143, 104040.Search in Google Scholar
Gao, X., Zheng, L., Wang, Y., Jiang, Y., Zhang, Y., & Fan, W. (2024). Simulation of Coupled Hydraulic– Thermal Characteristics for Energy-Saving Control of Steam Heating Pipeline. Sustainability, 16(12), 5043.GaoX.ZhengL.WangY.JiangY.ZhangY. & FanW. (2024). Simulation of Coupled Hydraulic– Thermal Characteristics for Energy-Saving Control of Steam Heating Pipeline. Sustainability, 16(12), 5043.Search in Google Scholar
Krechkovs’ ka, H. V., Student, O. Z., & Nykyforchyn, H. M. (2019). Diagnostics of the engineering state of steam pipelines of thermal power plants by the hardness and crack resistance of steel. Materials Science, 54, 627-637.Krechkovs’ kaH. V.StudentO. Z. & NykyforchynH. M. (2019). Diagnostics of the engineering state of steam pipelines of thermal power plants by the hardness and crack resistance of steel. Materials Science, 54, 627-637.Search in Google Scholar
Wang, Y., Tu, Z., & Yuan, L. (2020). Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line. Thermal Science, 24(5 Part B), 3249-3257.WangY.TuZ. & YuanL. (2020). Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line. Thermal Science, 24(5 Part B), 3249-3257.Search in Google Scholar
Li, L., Zhai, C., Shang, Y., Lou, C., Li, X., & Li, D. (2024). Life cycle cost approach involving steam transport model for insulation thickness optimization of steam pipes. Energy, 312, 133658.LiL.ZhaiC.ShangY.LouC.LiX. & LiD. (2024). Life cycle cost approach involving steam transport model for insulation thickness optimization of steam pipes. Energy, 312, 133658.Search in Google Scholar
An, L., Wang, J., Petit, D., Armstrong, J. N., Hanson, K., Hamilton, J., ... & Ren, S. (2020). An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano letters, 20(5), 3828-3835.AnL.WangJ.PetitD.ArmstrongJ. N.HansonK.HamiltonJ. ... & RenS. (2020). An all-ceramic, anisotropic, and flexible aerogel insulation material. Nano letters, 20(5), 3828-3835.Search in Google Scholar
Lakatos, A. (2018). Effect of the placement of aerogel insulation in the heat transfer properties. Journal of Thermal Analysis and Calorimetry, 133(1), 321-327.LakatosA. (2018). Effect of the placement of aerogel insulation in the heat transfer properties. Journal of Thermal Analysis and Calorimetry, 133(1), 321-327.Search in Google Scholar
Wan, W., Zhang, R., Ma, M., & Zhou, Y. (2018). Monolithic aerogel photocatalysts: a review. Journal of Materials Chemistry A, 6(3), 754-775.WanW.ZhangR.MaM. & ZhouY. (2018). Monolithic aerogel photocatalysts: a review. Journal of Materials Chemistry A, 6(3), 754-775.Search in Google Scholar
Smirnova, I., & Gurikov, P. (2018). Aerogel production: Current status, research directions, and future opportunities. The Journal of Supercritical Fluids, 134, 228-233.SmirnovaI. & GurikovP. (2018). Aerogel production: Current status, research directions, and future opportunities. The Journal of Supercritical Fluids, 134, 228-233.Search in Google Scholar
Vareda, J. P., Lamy-Mendes, A., & Durães, L. (2018). A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials, 258, 211-216.VaredaJ. P.Lamy-MendesA. & DurãesL. (2018). A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials, 258, 211-216.Search in Google Scholar
Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., & Koebel, M. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293-302.IswarS.MalfaitW. J.BalogS.WinnefeldF.LattuadaM. & KoebelM. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293-302.Search in Google Scholar
Fedyukhin, A. V., Strogonov, K. V., Soloveva, O. V., Solovev, S. A., Akhmetova, I. G., Berardi, U., ... & Grigorev, D. V. (2022). Aerogel product applications for high-temperature thermal insulation. Energies, 15(20), 7792.FedyukhinA. V.StrogonovK. V.SolovevaO. V.SolovevS. A.AkhmetovaI. G.BerardiU. ... & GrigorevD. V. (2022). Aerogel product applications for high-temperature thermal insulation. Energies, 15(20), 7792.Search in Google Scholar
Pastushkov, P. P., Gutnikov, S. I., Pavlenko, N. V., Zheldakov, D. Y., & Stolyarov, M. D. (2020, July). Heat conductivity of aerogel-based rolled materials for high-thermal isolation for equipment and pipelines. In IOP Conference Series: Materials Science and Engineering (Vol. 896, No. 1, p. 012103). IOP Publishing.PastushkovP. P.GutnikovS. I.PavlenkoN. V.ZheldakovD. Y. & StolyarovM. D. (2020, July). Heat conductivity of aerogel-based rolled materials for high-thermal isolation for equipment and pipelines. In IOP Conference Series: Materials Science and Engineering (Vol. 896, No. 1, p. 012103). IOP Publishing.Search in Google Scholar
Li, H., Ding, Z., Zhou, Q., Chen, J., Liu, Z., Du, C., ... & Chen, G. (2024). Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Letters, 16(1), 151.LiH.DingZ.ZhouQ.ChenJ.LiuZ.DuC. ... & ChenG. (2024). Harness high-temperature thermal energy via elastic thermoelectric aerogels. Nano-Micro Letters, 16(1), 151.Search in Google Scholar
Hu, P., Liu, L., Zhao, M., Wang, J., Ma, X., & Wang, J. (2021). Design, synthesis, and use of high temperature resistant aerogels exceeding 800 oC. ES Materials & Manufacturing, 15, 14-33.HuP.LiuL.ZhaoM.WangJ.MaX. & WangJ. (2021). Design, synthesis, and use of high temperature resistant aerogels exceeding 800 oC. ES Materials & Manufacturing, 15, 14-33.Search in Google Scholar
Chen, S., Shen, K., Chen, Z., Wu, Q., Yang, L., Zheng, Q., ... & Zhu, H. (2024). Ultrathin SiO2 aerogel papers with hierarchical scale enable high-temperature thermal insulation. Ceramics International, 50(10), 17836-17847.ChenS.ShenK.ChenZ.WuQ.YangL.ZhengQ. ... & ZhuH. (2024). Ultrathin SiO2 aerogel papers with hierarchical scale enable high-temperature thermal insulation. Ceramics International, 50(10), 17836-17847.Search in Google Scholar
Huang, D., Guo, C., Zhang, M., & Shi, L. (2017). Characteristics of nanoporous silica aerogel under high temperature from 950° C to 1200° C. Materials & Design, 129, 82-90.HuangD.GuoC.ZhangM. & ShiL. (2017). Characteristics of nanoporous silica aerogel under high temperature from 950° C to 1200° C. Materials & Design, 129, 82-90.Search in Google Scholar
Wu, Y., Wang, X., & Shen, J. (2023). Metal oxide aerogels for high-temperature applications. Journal of Sol-Gel Science and Technology, 106(2), 360-380.WuY.WangX. & ShenJ. (2023). Metal oxide aerogels for high-temperature applications. Journal of Sol-Gel Science and Technology, 106(2), 360-380.Search in Google Scholar
José Vitor C. Carmo,Joabson Nogueira,Gabriela M. Bertoldo,Francisco E. Clemente,Alcineia C. Oliveira,Adriana F. Campos... & Enrique Rodríguez Castellón. (2024). Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization. Catalysts(8),526-526.CarmoJosé Vitor C.NogueiraJoabsonBertoldoGabriela M.ClementeFrancisco E.OliveiraAlcineia C.CamposAdriana F.... & CastellónEnrique Rodríguez. (2024). Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization. Catalysts(8),526-526.Search in Google Scholar
Yue Liu,Chen Luo,Shuai Wang,Enrique Iglesia & Haichao Liu. (2024). Acid Catalysis Mediated by Aqueous Hydronium Ions Formed by Contacting Zeolite Crystals with Liquid Water. Journal of the American Chemical Society.LiuYueLuoChenWangShuaiIglesiaEnrique & LiuHaichao. (2024). Acid Catalysis Mediated by Aqueous Hydronium Ions Formed by Contacting Zeolite Crystals with Liquid Water. Journal of the American Chemical Society.Search in Google Scholar
M.K. Saranprabhu & K.S. Rajan. (2019). Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage. Renewable Energy451-459.SaranprabhuM.K. & RajanK.S.. (2019). Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage. Renewable Energy451-459.Search in Google Scholar
Liu Baokun,Zhao Junming,Grigoriev S.N. & Gusarov A.V. (2023). Particle non-isothermality effect on the radiative thermal conductivity in dense particulate systems. International Journal of Heat and Mass Transfer.BaokunLiuJunmingZhaoGrigorievS.N. & GusarovA.V. (2023). Particle non-isothermality effect on the radiative thermal conductivity in dense particulate systems. International Journal of Heat and Mass Transfer.Search in Google Scholar