This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Yang, Y., Gao, F., Ma, X., & Zhang, S. (2019). Deep learning-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579-36589.YangY.GaoF.MaX.ZhangS. (2019). Deep learning-based channel estimation for doubly selective fading channels. IEEE Access, 7, 36579-36589.Search in Google Scholar
Wang, C. X., Bian, J., Sun, J., Zhang, W., & Zhang, M. (2018). A survey of 5G channel measurements and models. IEEE Communications Surveys & Tutorials, 20(4), 3142-3168.WangC. X.BianJ.SunJ.ZhangW.ZhangM. (2018). A survey of 5G channel measurements and models. IEEE Communications Surveys & Tutorials, 20(4), 3142-3168.Search in Google Scholar
Wang, Z., Liu, L., & Cui, S. (2020). Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Transactions on Wireless Communications, 19(10), 6607-6620.WangZ.LiuL.CuiS. (2020). Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Transactions on Wireless Communications, 19(10), 6607-6620.Search in Google Scholar
Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M. S., & Dobbins, P. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys & Tutorials, 20(4), 2804-2821.KhuwajaA. A.ChenY.ZhaoN.AlouiniM. S.DobbinsP. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys & Tutorials, 20(4), 2804-2821.Search in Google Scholar
Zheng, B., You, C., Mei, W., & Zhang, R. (2022). A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications. IEEE Communications Surveys & Tutorials, 24(2), 1035-1071.ZhengB.YouC.MeiW.ZhangR. (2022). A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications. IEEE Communications Surveys & Tutorials, 24(2), 1035-1071.Search in Google Scholar
Wang, S., Liu, H., Gomes, P. H., & Krishnamachari, B. (2018). Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE transactions on cognitive communications and networking, 4(2), 257-265.WangS.LiuH.GomesP. H.KrishnamachariB. (2018). Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE transactions on cognitive communications and networking, 4(2), 257-265.Search in Google Scholar
Wu, S., Wang, C. X., Alwakeel, M. M., & You, X. (2017). A general 3-D non-stationary 5G wireless channel model. IEEE Transactions on Communications, 66(7), 3065-3078.WuS.WangC. X.AlwakeelM. M.YouX. (2017). A general 3-D non-stationary 5G wireless channel model. IEEE Transactions on Communications, 66(7), 3065-3078.Search in Google Scholar
Ramachandran, M. K., & Chockalingam, A. (2018, December). MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 206-212). IEEE.RamachandranM. K.ChockalingamA. (2018, December). MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 206-212). IEEE.Search in Google Scholar
Ma, X., Yang, F., Liu, S., Song, J., & Han, Z. (2017). Design and optimization on training sequence for mmWave communications: A new approach for sparse channel estimation in massive MIMO. IEEE Journal on Selected Areas in Communications, 35(7), 1486-1497.MaX.YangF.LiuS.SongJ.HanZ. (2017). Design and optimization on training sequence for mmWave communications: A new approach for sparse channel estimation in massive MIMO. IEEE Journal on Selected Areas in Communications, 35(7), 1486-1497.Search in Google Scholar
Ge, Y., Zhang, W., Gao, F., Zhang, S., & Ma, X. (2019). Beamforming network optimization for reducing channel time variation in high-mobility massive MIMO. IEEE Transactions on Communications, 67(10), 6781-6795.GeY.ZhangW.GaoF.ZhangS.MaX. (2019). Beamforming network optimization for reducing channel time variation in high-mobility massive MIMO. IEEE Transactions on Communications, 67(10), 6781-6795.Search in Google Scholar
Jeong, S., Simeone, O., & Kang, J. (2018). Optimization of massive full-dimensional MIMO for positioning and communication. IEEE Transactions on Wireless Communications, 17(9), 6205-6217.JeongS.SimeoneO.KangJ. (2018). Optimization of massive full-dimensional MIMO for positioning and communication. IEEE Transactions on Wireless Communications, 17(9), 6205-6217.Search in Google Scholar
Jing, X., Li, M., Liu, H., Li, S., & Pan, G. (2018). Superimposed pilot optimization design and channel estimation for multiuser massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(12), 11818-11832.JingX.LiM.LiuH.LiS.PanG. (2018). Superimposed pilot optimization design and channel estimation for multiuser massive MIMO systems. IEEE Transactions on Vehicular Technology, 67(12), 11818-11832.Search in Google Scholar
Li, Y., Tao, C., Seco-Granados, G., Mezghani, A., Swindlehurst, A. L., & Liu, L. (2017). Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Transactions on Signal Processing, 65(15), 4075-4089.LiY.TaoC.Seco-GranadosG.MezghaniA.SwindlehurstA. L.LiuL. (2017). Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Transactions on Signal Processing, 65(15), 4075-4089.Search in Google Scholar
Li, Z., Han, S., & Molisch, A. F. (2017). Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink. IEEE Transactions on Wireless Communications, 16(7), 4288-4303.LiZ.HanS.MolischA. F. (2017). Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink. IEEE Transactions on Wireless Communications, 16(7), 4288-4303.Search in Google Scholar
Vlachos, E., Alexandropoulos, G. C., & Thompson, J. (2018). Massive MIMO channel estimation for millimeter wave systems via matrix completion. IEEE Signal Processing Letters, 25(11), 1675-1679.VlachosE.AlexandropoulosG. C.ThompsonJ. (2018). Massive MIMO channel estimation for millimeter wave systems via matrix completion. IEEE Signal Processing Letters, 25(11), 1675-1679.Search in Google Scholar
Gupta, A., & Jha, R. K. (2017). Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Networks, 23(3), 959-973.GuptaA.JhaR. K. (2017). Power optimization using massive MIMO and small cells approach in different deployment scenarios. Wireless Networks, 23(3), 959-973.Search in Google Scholar
Al-Wahhamy, A., Al-Rizzo, H., & Buris, N. E. (2019). Efficient evaluation of massive MIMO channel capacity. IEEE Systems Journal, 14(1), 614-620.Al-WahhamyA.Al-RizzoH.BurisN. E. (2019). Efficient evaluation of massive MIMO channel capacity. IEEE Systems Journal, 14(1), 614-620.Search in Google Scholar
Wang, M., Gao, F., Jin, S., & Lin, H. (2019). An overview of enhanced massive MIMO with array signal processing techniques. IEEE Journal of Selected Topics in Signal Processing, 13(5), 886-901.WangM.GaoF.JinS.LinH. (2019). An overview of enhanced massive MIMO with array signal processing techniques. IEEE Journal of Selected Topics in Signal Processing, 13(5), 886-901.Search in Google Scholar
Olivier Rabaste & Thierry Chonavel. (2007). Estimation of Multipath Channels With Long Impulse Response at Low SNR via an MCMC Method. IEEE Trans. Signal Processing(4),1312-1325.RabasteOlivierChonavelThierry (2007). Estimation of Multipath Channels With Long Impulse Response at Low SNR via an MCMC Method. IEEE Trans. Signal Processing(4),1312-1325.Search in Google Scholar
Alsup Terrence,Hartland Tucker,Peherstorfer Benjamin & Petra Noemi. (2024). Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models. Advances in Computational Mathematics(4).TerrenceAlsupTuckerHartlandBenjaminPeherstorferNoemiPetra (2024). Further analysis of multilevel Stein variational gradient descent with an application to the Bayesian inference of glacier ice models. Advances in Computational Mathematics(4).Search in Google Scholar
Lu Yanping,Liu Liu & Liu Kai. (2022). Birth-and-Death-Based Multipath Cluster Channel Model for Massive MIMO. Journal of Physics: Conference Series(1).YanpingLuLiuLiuKaiLiu(2022). Birth-and-Death-Based Multipath Cluster Channel Model for Massive MIMO. Journal of Physics: Conference Series(1).Search in Google Scholar