Uneingeschränkter Zugang

J-class abelian semigroups of matrices on ℝn

  
08. Dez. 2017

Zitieren
COVER HERUNTERLADEN

We establish, for finitely generated abelian semigroups G of matrices on ℝn, and by using the extended limit sets (the J-sets), the following equivalence analogous to the complex case: (i) G is hypercyclic, (ii) JG(vη) = ℝn for some vector vη given by the structure of G, (iii) G(vη) = ℝn. This answer a question raised by the author. Moreover we construct for any n = 2 an abelian semigroup G of GL(n, ℝ) generated by n + 1 diagonal matrices which is locally hypercyclic (or J-class) but not hypercyclic and such that JG(ek) = ℝn for every k = 1,…, n, where (e1,…, en) is the canonical basis of ℝn. This gives a negative answer to a question raised by Costakis and Manoussos

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere