This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cong, R. G. (2013). An optimization model for renewable energy generation and its application in China: a perspective of maximum utilization. Renewable and Sustainable Energy Reviews, 17, 94-103.CongR. G. (2013). An optimization model for renewable energy generation and its application in China: a perspective of maximum utilization. Renewable and Sustainable Energy Reviews, 17, 94-103.Search in Google Scholar
Guerrero, J. M., Blaabjerg, F., Zhelev, T., Hemmes, K., Monmasson, E., Jemei, S., ... & Frau, J. I. (2010). Distributed generation: Toward a new energy paradigm. IEEE Industrial Electronics Magazine, 4(1), 52-64.GuerreroJ. M.BlaabjergF.ZhelevT.HemmesK.MonmassonE.JemeiS.FrauJ. I. (2010). Distributed generation: Toward a new energy paradigm. IEEE Industrial Electronics Magazine, 4(1), 52-64.Search in Google Scholar
Bugała, A., Zaborowicz, M., Boniecki, P., Janczak, D., Koszela, K., Czekała, W., & Lewicki, A. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312.BugałaA.ZaborowiczM.BonieckiP.JanczakD.KoszelaK.CzekałaW.LewickiA. (2018). Short-term forecast of generation of electric energy in photovoltaic systems. Renewable and Sustainable Energy Reviews, 81, 306-312.Search in Google Scholar
Chen, Y., Deng, C., Yao, W., Liang, N., Xia, P., Cao, P., ... & Peng, P. (2019). Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation. Renewable Energy, 133, 442-461.ChenY.DengC.YaoW.LiangN.XiaP.CaoP.PengP. (2019). Impacts of stochastic forecast errors of renewable energy generation and load demands on microgrid operation. Renewable Energy, 133, 442-461.Search in Google Scholar
Fan, R., Wu, H., Chang, X., Yang, C., Zhang, S., & Zhao, J. (2019, November). A New Power Prediction Accuracy Evaluation Method of Renewable Energy Plant. In 2019 IEEE Sustainable Power and Energy Conference (iSPEC) (pp. 610-612). IEEE.FanR.WuH.ChangX.YangC.ZhangS.ZhaoJ. (2019, November). A New Power Prediction Accuracy Evaluation Method of Renewable Energy Plant. In 2019 IEEE Sustainable Power and Energy Conference (iSPEC) (pp. 610-612). IEEE.Search in Google Scholar
Ge, J., Gao, B., Zhou, Z., Pang, Z., Wang, X., Hong, H., & Zhan, Z. (2024, March). Application of artificial intelligence technology in photovoltaic power generation prediction. In Journal of Physics: Conference Series (Vol. 2728, No. 1, p. 012036). IOP Publishing.GeJ.GaoB.ZhouZ.PangZ.WangX.HongH.ZhanZ. (2024, March). Application of artificial intelligence technology in photovoltaic power generation prediction. In Journal of Physics: Conference Series (Vol. 2728, No. 1, p. 012036). IOP Publishing.Search in Google Scholar
Golestaneh, F., Pinson, P., & Gooi, H. B. (2016). Very short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy. IEEE Transactions on Power Systems, 31(5), 3850-3863.GolestanehF.PinsonP.GooiH. B. (2016). Very short-term nonparametric probabilistic forecasting of renewable energy generation—With application to solar energy. IEEE Transactions on Power Systems, 31(5), 3850-3863.Search in Google Scholar
De Andrade, J. B. S. O., Dutra, L., Schwinden, N. B. C., & De Andrade, S. F. (2015). Future scenarios and trends in energy generation in Brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, 103, 197-210.De AndradeJ. B. S. O.DutraL.SchwindenN. B. C.De AndradeS. F. (2015). Future scenarios and trends in energy generation in Brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, 103, 197-210.Search in Google Scholar
Liu, T., Xu, G., Cai, P., Tian, L., & Huang, Q. (2011). Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country. Renewable Energy, 36(4), 1284-1292.LiuT.XuG.CaiP.TianL.HuangQ. (2011). Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country. Renewable Energy, 36(4), 1284-1292.Search in Google Scholar
Croonenbroeck, C., & Stadtmann, G. (2019). Renewable generation forecast studies–Review and good practice guidance. Renewable and Sustainable Energy Reviews, 108, 312-322.CroonenbroeckC.StadtmannG. (2019). Renewable generation forecast studies–Review and good practice guidance. Renewable and Sustainable Energy Reviews, 108, 312-322.Search in Google Scholar
Zhang, R., Feng, M., Zhang, W., Lu, S., & Wang, F. (2018, November). Forecast of solar energy production-A deep learning approach. In 2018 IEEE International Conference on Big Knowledge (ICBK) (pp. 73-82). IEEE.ZhangR.FengM.ZhangW.LuS.WangF. (2018, November). Forecast of solar energy production-A deep learning approach. In 2018 IEEE International Conference on Big Knowledge (ICBK) (pp. 73-82). IEEE.Search in Google Scholar
Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects. Sustainability, 15(9), 7087.BentiN. E.ChakaM. D.SemieA. G. (2023). Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects. Sustainability, 15(9), 7087.Search in Google Scholar
Orwig, K. D., Ahlstrom, M. L., Banunarayanan, V., Sharp, J., Wilczak, J. M., Freedman, J., ... & Marquis, M. (2014). Recent trends in variable generation forecasting and its value to the power system. IEEE Transactions on Sustainable Energy, 6(3), 924-933.OrwigK. D.AhlstromM. L.BanunarayananV.SharpJ.WilczakJ. M.FreedmanJ.MarquisM. (2014). Recent trends in variable generation forecasting and its value to the power system. IEEE Transactions on Sustainable Energy, 6(3), 924-933.Search in Google Scholar
Kudo, M., Takeuchi, A., Nozaki, Y., Endo, H., & Sumita, J. (2009). Forecasting electric power generation in a photovoltaic power system for an energy network. Electrical Engineering in Japan, 167(4), 16-23.KudoM.TakeuchiA.NozakiY.EndoH.SumitaJ. (2009). Forecasting electric power generation in a photovoltaic power system for an energy network. Electrical Engineering in Japan, 167(4), 16-23.Search in Google Scholar
Ding, S., Zhang, H., Tao, Z., & Li, R. (2022). Integrating data decomposition and machine learning methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert Systems with Applications, 204, 117635.DingS.ZhangH.TaoZ.LiR. (2022). Integrating data decomposition and machine learning methods: An empirical proposition and analysis for renewable energy generation forecasting. Expert Systems with Applications, 204, 117635.Search in Google Scholar
Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable energy, 37(1), 1-8.FoleyA. M.LeahyP. G.MarvugliaA.McKeoghE. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable energy, 37(1), 1-8.Search in Google Scholar
Yu, F., Dong, C., & Jiang, J. (2019, June). Summary of research on power forecasting technology of new energy generation. In 2019 2nd Asia Conference on Energy and Environment Engineering (ACEEE) (pp. 49-53). IEEE.YuF.DongC.JiangJ. (2019, June). Summary of research on power forecasting technology of new energy generation. In 2019 2nd Asia Conference on Energy and Environment Engineering (ACEEE) (pp. 49-53). IEEE.Search in Google Scholar
Zheng, J., Du, J., Wang, B., Klemeš, J. J., Liao, Q., & Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renewable and Sustainable Energy Reviews, 172, 113046.ZhengJ.DuJ.WangB.KlemešJ. J.LiaoQ.LiangY. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources. Renewable and Sustainable Energy Reviews, 172, 113046.Search in Google Scholar
Widodo, D. A., Iksan, N., & Udayanti, E. D. (2021, March). Renewable energy power generation forecasting using deep learning method. In IOP Conference Series: Earth and Environmental Science (Vol. 700, No. 1, p. 012026). IOP Publishing.WidodoD. A.IksanN.UdayantiE. D. (2021, March). Renewable energy power generation forecasting using deep learning method. In IOP Conference Series: Earth and Environmental Science (Vol. 700, No. 1, p. 012026). IOP Publishing.Search in Google Scholar
Zhou, C., Tang, B., Cui, W., & Yao, Z. (2020, July). Short-term power forecast of wind power generation based on genetic algorithm optimized neural network. In Journal of Physics: Conference Series (Vol. 1601, No. 2, p. 022046). IOP Publishing.ZhouC.TangB.CuiW.YaoZ. (2020, July). Short-term power forecast of wind power generation based on genetic algorithm optimized neural network. In Journal of Physics: Conference Series (Vol. 1601, No. 2, p. 022046). IOP Publishing.Search in Google Scholar
Chen, G., Shan, J., Li, D. Y., Wang, C., Li, C., Zhou, Z., ... & Hao, J. J. (2019). Research on wind power prediction method based on convolutional neural network and genetic algorithm. 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 3573-3578.ChenG.ShanJ.LiD. Y.WangC.LiC.ZhouZ.HaoJ. J. (2019). Research on wind power prediction method based on convolutional neural network and genetic algorithm. 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), 3573-3578.Search in Google Scholar
Chen Li,Dong Sheng Cao,Zi Teng Zhao,Xuan Wang & Xi Yang Xie. (2024). Forecast for wind power at ultra-short-term based on a composite model. Energy Reports4076-4082.ChenLiDong ShengCaoZi TengZhaoXuanWangXi YangXie (2024). Forecast for wind power at ultra-short-term based on a composite model. Energy Reports4076-4082.Search in Google Scholar
Leo Justin & Kalita Jugal. (2021). Incremental Deep Neural Network Learning Using Classification Confidence Thresholding. IEEE transactions on neural networks and learning systems.LeoJustinKalitaJugal (2021). Incremental Deep Neural Network Learning Using Classification Confidence Thresholding. IEEE transactions on neural networks and learning systems.Search in Google Scholar
Yiming Jiang,Jinlan Liu,Dongpo Xu & Danilo P Mandic. (2024). UAdam: Unified Adam-Type Algorithmic Framework for Nonconvex Optimization. Neural computation(9),21-27.YimingJiangJinlanLiuDongpoXuDanilo PMandic (2024). UAdam: Unified Adam-Type Algorithmic Framework for Nonconvex Optimization. Neural computation(9),21-27.Search in Google Scholar
Li Zuohong,Li Feng,Liu Ruoping,Yu Mengze,Chen Zhiying,Xie Zihao & Du Zhaobin.(2022). A Data-Driven Genetic Algorithm for Power Flow Optimization in the Power System With Phase Shifting Transformer. Frontiers in Energy Research.LiZuohongLiFengLiuRuopingYuMengzeChenZhiyingXieZihaoDuZhaobin.(2022). A Data-Driven Genetic Algorithm for Power Flow Optimization in the Power System With Phase Shifting Transformer. Frontiers in Energy Research.Search in Google Scholar
Ji Jiang,Zhao Chen,Wang Yongqin,Zhao Tuanmin & Zhang Xinyou. (2021). A Fault Diagnosis Method of Rolling Mill Bearing at Low Frequency and Overload Condition Based on Integration of EEMD and GA-DBN. Mathematical Problems in Engineering.JiJiangZhaoChenWangYongqinZhaoTuanminZhangXinyou (2021). A Fault Diagnosis Method of Rolling Mill Bearing at Low Frequency and Overload Condition Based on Integration of EEMD and GA-DBN. Mathematical Problems in Engineering.Search in Google Scholar