Open Access

Performance prediction and behavioral simulation of carbon fiber reinforced materials in structural engineering

 and   
Nov 25, 2024

Cite
Download Cover

Hassoun, M. N., & Al-Manaseer, A. (2020). Structural concrete: theory and design. John wiley & sons. Search in Google Scholar

Menna, C., Mata-Falcón, J., Bos, F. P., Vantyghem, G., Ferrara, L., Asprone, D., ... & Kaufmann, W. (2020). Opportunities and challenges for structural engineering of digitally fabricated concrete. Cement and Concrete Research, 133, 106079. Search in Google Scholar

Mindess, S. (Ed.). (2019). Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing. Search in Google Scholar

Muthukumarana, T. V., Arachchi, M. A. V. H. M., Somarathna, H. M. C. C., & Raman, S. N. (2023). A review on the variation of mechanical properties of carbon fibre-reinforced concrete. Construction and Building Materials, 366, 130173. Search in Google Scholar

Kromoser, B., Preinstorfer, P., & Kollegger, J. (2019). Building lightweight structures with carbon‐fiber‐ reinforced polymer‐reinforced ultra‐high‐performance concrete: Research approach, construction materials, and conceptual design of three building components. Structural Concrete, 20(2), 730-744. Search in Google Scholar

Kormanikova, E., Zmindak, M., Novak, P., & Sabol, P. (2021). Tensile properties of carbon fiber reinforced polymer matrix composites: Application for the strengthening of reinforced concrete structure. Composite Structures, 275, 114448. Search in Google Scholar

Tan, W., & Liu, B. (2020). A physically-based constitutive model for the shear-dominated response and strain rate effect of carbon fibre reinforced composites. Composites Part B: Engineering, 193, 108032. Search in Google Scholar

Pawlak, A. M., Górny, T., Dopierała, Ł., & Paczos, P. (2022). The use of CFRP for structural reinforcement—literature review. Metals, 12(9), 1470. Search in Google Scholar

Frhaan, W. K. M., Abu Bakar, B. H., Hilal, N., & Al-Hadithi, A. I. (2021). CFRP for strengthening and repairing reinforced concrete: A review. Innovative Infrastructure Solutions, 6, 1-13. Search in Google Scholar

Stoiber, N., Hammerl, M., & Kromoser, B. (2021). Cradle-to-gate life cycle assessment of CFRP reinforcement for concrete structures: Calculation basis and exemplary application. Journal of Cleaner Production, 280, 124300. Search in Google Scholar

Zhang, Z., Shi, J., Yu, T., Santomauro, A., Gordon, A., Gou, J., & Wu, D. (2020). Predicting flexural strength of additively manufactured continuous carbon fiber-reinforced polymer composites using machine learning. Journal of Computing and Information Science in Engineering, 20(6), 061015. Search in Google Scholar

Monticeli, F. M., Neves, R. M., Ornaghi Jr, H. L., & Almeida Jr, J. H. S. (2022). Prediction of bending properties for 3D-printed carbon fibre/epoxy composites with several processing parameters using ANN and statistical methods. Polymers, 14(17), 3668. Search in Google Scholar

Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R. N., & Khayyam, H. (2019). A machine learning case study with limited data for prediction of carbon fiber mechanical properties. Computers in Industry, 105, 123-132. Search in Google Scholar

Shi, Y., Pinna, C., & Soutis, C. (2020). Impact damage characteristics of carbon fibre metal laminates: experiments and simulation. Applied Composite Materials, 27, 511-531. Search in Google Scholar

Alsuhaibani, E., Yazdani, N., & Beneberu, E. (2022). Durability and long-term performance prediction of carbon fiber reinforced polymer laminates. Polymers, 14(15), 3207. Search in Google Scholar

Li, A., Mao, Q., Li, J., Li, Y., Li, X., Huang, J., ... & Zhang, C. (2024). Review on methodologies of fatigue property prediction for carbon fiber reinforced polymer. Composites Part B: Engineering, 111659. Search in Google Scholar

Qi, Z., Zhang, N., Liu, Y., & Chen, W. (2019). Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning. Composite Structures, 212, 199-206. Search in Google Scholar

Omer, R., Mali, H. S., & Singh, S. K. (2020). Tensile performance of additively manufactured short carbon fibre-PLA composites: neural networking and GA for prediction and optimisation. Plastics, Rubber and Composites, 49(6), 271-280. Search in Google Scholar

Batuwitage, C., Fawzia, S., Thambiratnam, D., Liu, X., Al-Mahaidi, R., & Elchalakani, M. (2018). Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: A numerical simulation. Thin-Walled Structures, 131, 245-257. Search in Google Scholar

Xu, R., Huang, Y., Lin, Y., Bai, B., & Huang, T. (2017). In-plane flexural behaviour and failure prediction of carbon fibre-reinforced aluminium laminates. Journal of reinforced plastics and composites, 36(18), 1384-1399. Search in Google Scholar

Lin, Y., Huang, Y., Huang, T., Liao, B., Zhang, D., & Li, C. (2019). Characterization of progressive damage behaviour and failure mechanisms of carbon fibre reinforced aluminium laminates under three-point bending. Thin-Walled Structures, 135, 494-506. Search in Google Scholar

Sencu, R. M., Yang, Z., Wang, Y. C., Withers, P. J., & Soutis, C. (2020). Multiscale image-based modelling of damage and fracture in carbon fibre reinforced polymer composites. Composites Science and Technology, 198, 108243. Search in Google Scholar

Chao Gao, Chunjian Mao, Xiwu Xu & Chao Zhang. (2024). A novel rapid generation algorithm for Representative Volume Element (RVE) in composite materials considering pore geometrical parameters. Composites Communications101898-. Search in Google Scholar

Chenhao Ji,Yunong Zhai, Dongsheng Li & Hao Qu. (2024). Transverse failure prediction of unidirectional carbon fiber reinforced polymer composites subjected to uniaxial and biaxial loading by stress-triaxiality-dependent computational micromechanics. Composite Structures118359-118359. Search in Google Scholar

Saulo Orizaga, Gilberto González Parra, Logan Forman & Jesus Villegas Villanueva. (2025). Solving Allen-Cahn equations with periodic and nonperiodic boundary conditions using mimetic finite-difference operators. Applied Mathematics and Computation128993-128993. Search in Google Scholar

Chen Xiangming, Sun Xiasheng, Chen Puhui, Wang Binwen, Gu Jiefei, Wang Wenzhi... & Zhao Yueran. (2021). Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials. Composite Structures113120-. Search in Google Scholar

Language:
English