Computation of certain topological coindices of graphene sheet and C 4C 8(S ) nanotubes and nanotorus
and
Dec 18, 2019
About this article
Published Online: Dec 18, 2019
Page range: 455 - 468
Received: Mar 05, 2019
Accepted: May 09, 2019
DOI: https://doi.org/10.2478/AMNS.2019.2.00043
Keywords
© 2019 R. A. Mundewadi and Kumbinarasaiah S, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 Public License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4
![Two-dimensions of TUC4C8(S)[m, n] (a) nanotube and (b) nanotorus](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709f1e71e4585e08aa18e9/j_AMNS.2019.2.00043_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T093338Z&X-Amz-Expires=3600&X-Amz-Signature=f07edd3fb1465de31b93edba56d6a89a6db89d1d001a944e29e0e4f4ae76547d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Fig. 5
![Comparative model for different coindices of TUC4C8(S)[m, n] (a) nanotubes and (b) nanotorus](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709f1e71e4585e08aa18e9/j_AMNS.2019.2.00043_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251005%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251005T093338Z&X-Amz-Expires=3600&X-Amz-Signature=f117cb4d90d714eae1c8334180131a4060bb23a4ec9aa28cd475f4583171135f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Vertex and edge partitions of graphene sheet for n ≠ 1
Row | |||||
---|---|---|---|---|---|
1 | 3 |
3 | 2 |
3 |
|
2 | 2 | 2 |
1 | 2 | 3 |
3 | 2 | 2 |
1 | 2 | 3 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2 | 2 |
1 | 2 | 3 |
|
n | 3 | 2 |
|||
2 |
2 |
4 |
3 |
Few topological coindex values of TUC4C8(S)[m, n] nanotubes
n | m | |||||
---|---|---|---|---|---|---|
2 | 2 | 11552 | 5652 | 4048 | ||
2 | 3 | 26928 | 13182 | 9432 | ||
2 | 4 | 48704 | 23848 | 17056 | ||
3 | 2 | 24160 | 11892 | 8336 | ||
3 | 3 | 55728 | 27438 | 19224 | ||
3 | 4 | 100288 | 49384 | 34592 | ||
4 | 2 | 41376 | 20436 | 14160 | ||
4 | 3 | 94896 | 46878 | 32472 | ||
4 | 4 | 170304 | 84136 | 58272 |
Vertex and edge partitions of graphene sheet for n = 1
2 |
2 |
6 | 4 |
Few topological coindex values of TUC4C8(S)[m, n] nanotorus
n | m | |||||
---|---|---|---|---|---|---|
2 | 2 | 8064 | 4032 | 2688 | ||
2 | 3 | 19008 | 9504 | 6336 | ||
2 | 4 | 34560 | 17280 | 11520 | ||
3 | 2 | 19008 | 9504 | 6336 | ||
3 | 3 | 44064 | 22032 | 14688 | ||
3 | 4 | 79488 | 39744 | 26496 | ||
4 | 2 | 34560 | 17280 | 11520 | ||
4 | 3 | 79488 | 39744 | 26496 | ||
4 | 4 | 142848 | 71424 | 47616 |
The edge partitions mij of G based on the vertex degrees of G, for n ≠ 1
( |
Number of edges in |
---|---|
(2, 2) | 2 |
(3, 3) | 2( |
(2, 3) | 4 |
The edge partitions mij of G based on the vertex degrees of G, for n = 1
( |
Number of edges in |
---|---|
(2, 2) | 2 |
(3, 3) | 2 |
(2, 3) | 4 |
The edge partitions mij of G based on the vertex degrees of G_
( |
Number of edges in; |
---|---|
(2, 2) | 8 |
(3, 3) | 32( |
(2, 3) | 32 |
MATLAB illustration: » Topological_coindices_of_graphene_sheet(3, 3)
1 | 1 | 72 | 36 | 36 | 262144 | 262144 |
1 | 2 | 332 | 160 | 148 | 4.294967 |
3.829436 |
1 | 3 | 800 | 384 | 340 | 9.119789 |
1.578155 |
2 | 1 | 332 | 160 | 148 | 1.099512 |
2.279947 |
2 | 2 | 1168 | 558 | 476 | 4.057816 |
3.066407 |
2 | 3 | 2532 | 1212 | 996 | 2.518170 |
1.557022 |
3 | 1 | 800 | 383 | 340 | 1.593799 |
3.330579 |
3 | 2 | 2532 | 1211 | 996 | 7.383353 |
6.934815 |
3 | 3 | 5256 | 2523 | 2004 | 3.208625 |
Vertex and edge partitions of G
4 |
8 |
2 |
4 |
12 |