Open Access

Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus

  
Dec 01, 2018

Cite
Download Cover

undefined

Fig. 1

Plots of numerical inversions f̂(t) of the Laplace transform (1) (a) and their relative errors (b) for applied methods in interval (0,10〉.
Plots of numerical inversions f̂(t) of the Laplace transform (1) (a) and their relative errors (b) for applied methods in interval (0,10〉.

Fig. 2

Plots of numerical inversions f̂(t) of the Laplace transform (2) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (2) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 3

Plots of numerical inversions f̂(t) of the Laplace transform (3) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (3) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 4

Plots of numerical inversions f̂(t) of the Laplace transform (4) (a) and their relative errors (b) for applied methods in interval (0,50〉.
Plots of numerical inversions f̂(t) of the Laplace transform (4) (a) and their relative errors (b) for applied methods in interval (0,50〉.

Fig. 5

Plots of numerical inversions f̂(t) of the Laplace transform (5) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (5) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 6

Plots of numerical inversions f̂(t) of the Laplace transform (6) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (6) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 7

Plots of numerical inversions f̂(t) of the Laplace transform (7) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (7) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 8

Plots of numerical inversions f̂(t) of the Laplace transform (8) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (8) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 9

Plots of numerical inversions f̂(t) of the Laplace transform (9) (a) and their relative errors (b) for applied methods in interval (0,30〉.
Plots of numerical inversions f̂(t) of the Laplace transform (9) (a) and their relative errors (b) for applied methods in interval (0,30〉.

Fig. 10

Plots of numerical inversions f̂(t) of the Laplace transform (10) (a) and their relative errors (b) for applied methods in interval (0,20〉.
Plots of numerical inversions f̂(t) of the Laplace transform (10) (a) and their relative errors (b) for applied methods in interval (0,20〉.
Language:
English