Open Access

High-accuracy approximation of piecewise smooth functions using the Truncation and Encode approach

 and   
Sep 06, 2017

Cite
Download Cover

R. Abgrall, P.M. Congedo, and G. Geraci. A one-time truncate and encode multiresolution stochastic framework. Journal of Computational Physics, 257, Part A:19 – 56, 2014. URL: http://www.sciencedirect.com/science/article/pii/S0021999113005342, 10.1016/j.jcp.2013.08.006.AbgrallR.CongedoP.M.GeraciG.A one-time truncate and encode multiresolution stochastic frameworkJournal of Computational Physics257Part A1956201410.1016/j.jcp.2013.08.006Open DOISearch in Google Scholar

F. Aràndiga, A. M. Belda, and P. Mulet. Point-value weno multiresolution applications to stable image compression. Journal of Scientific Computing, 43(2):158–182, 2010. URL: http://dx.doi.org/10.1007/s10915-010-9351-810.1007/s10915-010-9351-8.AràndigaF.BeldaA. M.MuletP.value weno multiresolution applications to stable image compressionJournal of Scientific Computing432158182201010.1007/s10915-010-9351-8Open DOISearch in Google Scholar

Francesc Aràndiga and Rosa Donat. Nonlinear multiscale decompositions: The approach of a. harten. Numerical Algorithms, 23(2):175–216, 2000. URL: URL: http://dx.doi.org/10.1023/A:1019104118012,10.1023/A:1019104118012.FrancescAràndigaRosaDonatNonlinear multiscale decompositions: The approach of a. hartenNumerical Algorithms232175216200010.1023/A:1019104118012Open DOISearch in Google Scholar

Francesc Aràndiga, Rosa Donat, and Maria Santágueda. Weighted-Power p Nonlinear Subdivision Schemes, pages 109–129. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27413-8_7, 10.1007/978-3-642-27413-8_7.FrancescAràndigaRosaDonatMariaSantáguedaWeighted-Power p Nonlinear Subdivision Schemes, pages 109–129Springer Berlin Heidelberg, Berlin, Heidelberg201210.1007/978-3-642-27413-8_7Open DOISearch in Google Scholar

F. Ar[ndiga, R. Donat, and M. Sant“gueda. The PCHIP subdivision scheme. Applied Mathematics and Computation, 272, Part 1:28 – 40, 2016. Subdivision, Geometric and Algebraic Methods, Isogeometric Analysis and Refinability. URL: http://www.sciencedirect.com/science/article/pii/S009630031500990X, 10.1016/j.amc.2015.07.071.Ar[ndigaF.DonatR.Sant“guedaM.The PCHIP subdivision scheme. Applied Mathematics and Computation, 272, Part 1:28 – 40, 2016Subdivision, Geometric and Algebraic Methods, Isogeometric Analysis and Refinabilityhttp://www.sciencedirect.com/science/article/pii/S009630031500990X10.1016/j.amc.2015.07.071Open DOISearch in Google Scholar

O. Boiron, G. Chiavassa, and R. Donat. A high-resolution penalization method for large mach number flows in the presence of obstacles. Computers & Fluids, 38(3):703 – 714, 2009. http://www.sciencedirect.com/science/article/pii/S0045793008001424, 10.1016/j.compfluid.2008.07.003.BoironO.ChiavassaG.DonatR.A high-resolution penalization method for large mach number flows in the presence of obstaclesComputers & Fluids3837037142009URL: http://www.sciencedirect.com/science/article/pii/S004579300800142410.1016/j.compfluid.2008.07.003Open DOISearch in Google Scholar

Guillaume Chiavassa and Rosa Donat. Point value multiscale algorithms for 2d compressible flows. SIAM Journal on Scientific Computing, 23(3):805–823, 2001. URL: http://dx.doi.org/10.1137/S1064827599363988arXiv:http://dx.doi.org/10.1137/S106482759936398810.1137/S1064827599363988.GuillaumeChiavassaRosaDonatPoint value multiscale algorithms for 2d compressible flowsSIAM Journal on Scientific Computing233805823200110.1137/S1064827599363988Open DOISearch in Google Scholar

Chiavassa, Guillaume, Donat, Rosa, and Martinez-Gavara, Anna. Cost-effective multiresolution schemes for shock computations. ESAIM: Proc., 29:8–27, 2009. URL: https://doi.org/10.1051/proc/200905210.1051/proc/2009052.ChiavassaGuillaumeDonatRosaMartinez-GavaraAnnaCost-effective multiresolution schemes for shock computationsESAIM: Proc.29827200910.1051/proc/2009052Open DOISearch in Google Scholar

Rosa Donat, Sergio López-Ureña, and Maria Santágueda. A family of non-oscillatory 6-point interpolatory subdivision schemes. Advances in Computational Mathematics, pages 1–35, 2017. URL: http://dx.doi.org/10.1007/s10444-016-9509-510.1007/s10444-016-9509-5.RosaDonatSergioLópez-UreñaMariaSantáguedaA family of non-oscillatory 6-point interpolatory subdivision schemesAdvances in Computational Mathematics135201710.1007/s10444-016-9509-5Open DOISearch in Google Scholar

Nira Dyn. Subdivision schemes in cagd. In Advances in Numerical Analysis, pages 36–104. Univ. Press, 1992.NiraDynSubdivision schemes in cagdIn Advances in Numerical Analysis36104Univ. Press199210.1093/oso/9780198534396.003.0002Search in Google Scholar

Gianluca Geraci, Pietro Marco Congedo, Rémi Abgrall, and Gianluca Iaccarino. A novel weakly-intrusive nonlinear multiresolution framework for uncertainty quantification in hyperbolic partial differential equations. Journal of Scientific Computing, 66(1):358–405, 2016. URL: http://dx.doi.org/10.1007/s10915-015-0026-310.1007/s10915-015-0026-3.GianlucaGeraciPietroMarco CongedoRémiAbgrallGianlucaIaccarinoA novel weakly-intrusive nonlinear multiresolution framework for uncertainty quantification in hyperbolic partial differential equationsJournal of Scientific Computing661358405201610.1007/s10915-015-0026-3Open DOISearch in Google Scholar

Ami Harten. Multiresolution representation of data: A general framework. SIAM Journal on Numerical Analysis, 33(3):1205–1256, 1996. URL: http://dx.doi.org/10.1137/0733060arXiv:http://dx.doi.org/10.1137/073306010.1137/0733060.AmiHartenMultiresolution representation of data: A general frameworkSIAM Journal on Numerical Analysis33312051256199610.1137/0733060Open DOISearch in Google Scholar

Audrey Rault, Guillaume Chiavassa, and Rosa Donat. Shock-vortex interactions at high mach numbers. Journal of Scientific Computing, 19(1):347–371, 2003. URL: http://dx.doi.org/10.1023/A:102531631163310.1023/A:1025316311633.AudreyRaultGuillaumeChiavassaRosaDonatShock-vortex interactions at high mach numbersJournal of Scientific Computing191347371200310.1023/A:1025316311633Open DOISearch in Google Scholar

Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938. URL: http://www.jstor.org/stable/2371268.10.2307/2371268NorbertWienerThe homogeneous chaosAmerican Journal of Mathematics6048979361938http://www.jstor.org/stable/2371268Open DOISearch in Google Scholar

Language:
English