Mean square calculus and random linear fractional differential equations: Theory and applications
, , and
Jul 28, 2017
About this article
Published Online: Jul 28, 2017
Page range: 317 - 328
Received: Apr 04, 2017
Accepted: Jul 28, 2017
DOI: https://doi.org/10.21042/AMNS.2017.2.00026
Keywords
© 2017 C. Burgos, J.C Cortés, L. Villafuerte, R.J. Villanueva, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Figure 1
![Approximations of the mean (left) and the standard deviation (rigth) of the solution SP to the random IVP (2)α = 0.7 and λ = 3/4 using different orders of truncations M = 6, 7, 8, 9, 10 over the time interval [0, 5].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e5971e4585e08aa181d/j_AMNS.2017.2.00026_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251006%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251006T230626Z&X-Amz-Expires=3600&X-Amz-Signature=1b247441fe0195ba5626ecc428858cb642bd6414389b560dd9045cef53041fb0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2
![Approximations of the mean (left) and the standard deviation (right) of the solution SP to the random IVP (2) with α = 0.7 and λ = 5/4 using different orders of truncations M = 10, 12, 14, 16, 18 over the time interval [0,5].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e5971e4585e08aa181d/j_AMNS.2017.2.00026_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251006%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251006T230626Z&X-Amz-Expires=3600&X-Amz-Signature=f3e0ff07c0af812e6fca833037d3361f07fdf88780fc4342f5e4696a8b36c0fd&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3
![Approximations of the mean (left) and the standard deviation (right) of the solution SP to the random IVP (2) with α = 0.7, λ = 5/4, E[b0]=E[c]=−1 $\mathbb{E}[b_0]=\mathbb{E}[c]=-1$ and V[b0]=V[c]=1/4 $\mathbb{V}[b_0]=\mathbb{V}[c]=1/4$ using different orders of truncations M over the time intervals [0,5].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e5971e4585e08aa181d/j_AMNS.2017.2.00026_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251006%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251006T230626Z&X-Amz-Expires=3600&X-Amz-Signature=bb81127146256b7bbee4ef8b1fd456fc6f1c2a85392b164ef51c24a3e232df07&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4
![Approximations of the mean (left) and the standard deviation (right) of the solution SP to the random IVP (2) with M = 20, λ = 5/4, E[b0]=E[c]=−1 $\mathbb{E}[b_0]=\mathbb{E}[c]=-1$ and V[b0]=V[c]=1/4 $\mathbb{V}[b_0]=\mathbb{V}[c]=1/4$ using different orders of the derivative α = {0.4, 0.5, 0.6, 0.7, 0.99} over the time interval [0, 5].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64709e5971e4585e08aa181d/j_AMNS.2017.2.00026_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251006%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251006T230626Z&X-Amz-Expires=3600&X-Amz-Signature=85970fa02ea5115c083b958bb45bccd0e99b7e545d055af0b29c85ee229beaa0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)