Vibrations attenuation of a system excited by unbalance and the ground movement by an impact element
and
Dec 08, 2016
About this article
Published Online: Dec 08, 2016
Page range: 603 - 616
Received: Sep 11, 2016
Accepted: Dec 08, 2016
DOI: https://doi.org/10.21042/AMNS.2016.2.00046
Keywords
© 2016 Marek Lampart, Jaroslav Zapoměl, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Parameters of the system (1)_
value | quantity | format | description |
---|---|---|---|
100 | kg | mass of the damping body | |
40 | kg | mass of the rotor | |
kg | mass of the impact element | ||
1.5 ×105 | N m−1 | linear stiffness coefficient | |
5 | kg m2 | moment of inertia of the rotor | |
1.5 × 103 | N s m−1 | damping coefficient of the suspension | |
8 × 104 | N m−1 | coupling stiffness of the impact element | |
500 | N s m−1 | damping coefficient of the impact element | |
2 | mm | eccentricity of the rotor center of gravity | |
Φ | rad | rotation angle of the rotor | |
100 | N m | starting moment | |
8 | N m s rad−1 | negative of the motor characteristic slope | |
1 | s−1 | parameter of the baseplate excitation | |
rad s−1 | baseplate excitation frequency | ||
1 | mm | ground vibration amplitude | |
4 × 107 | N m−1 | contact stiffness | |
3 × 103 | N s m−1 | coefficient of contact damping |