Accuracy Problems of Numerical Calculation of Fractional Order Derivatives and Integrals Applying the Riemann-Liouville/Caputo Formulas
Jan 01, 2016
About this article
Published Online: Jan 01, 2016
Page range: 23 - 44
Received: Jun 01, 2015
Accepted: Nov 04, 2015
DOI: https://doi.org/10.21042/AMNS.2016.1.00003
Keywords
© 2016 Dariusz W. Brzeziński, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

D(1/2)f(t), f(t) = t, t ∈ (0,1), relative error in %
GL | NCm | Diet | Odiba | |
---|---|---|---|---|
8 | 8.11 | 10.68 | 0.0004 | 0.0024 |
15 | 4.25 | 7.81 | 0.0004 | 0.0023 |
21 | 3.02 | 6.6 | 0.0004 | 0.0023 |
61 | 1.03 | 3.88 | 0.0004 | 0.0022 |
300 | 0.21 | 1.75 | 0.0002 | 0.0021 |
600 | 0.11 | 1.24 | 0.0002 | 0.0021 |
1000 | 0.06 | 0.96 | 0.0002 | 0.0021 |
D(1/2)f(t), f(t) = e−t, t ∈ (0,5), relative error in %
GL | NCm | |
---|---|---|
8 | 61.87 | 13.52 |
15 | 29.32 | 5.88 |
21 | 20.17 | 4.12 |
61 | 6.54 | 1.81 |
300 | 1.3 | 0.76 |
600 | 0.65 | 0.53 |
1000 | 0.39 | 0.41 |
D(1/2)f(t), f(t) = sin(t), t ∈ (0,2π), relative error in %
GL | NCm | Diet | Odiba | |
---|---|---|---|---|
8 | 130.03 | 45.42 | 17.67 | 5.78 |
15 | 66.14 | 33.64 | 7.95 | 3.46 |
21 | 46.09 | 28.77 | 5.18 | 2.94 |
61 | 16.1 | 17.84 | 1.53 | 2.94 |
300 | 5.02 | 9.35 | 0.62 | 2.43 |
600 | 3.67 | 7.29 | 0.56 | 2.35 |
1000 | 3.14 | 6.18 | 0.55 | 2.35 |