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Abstract

With the development of computer network technology, distributed database has become a current research hotspot. Based
on the structural characteristics of distributed database systems, the article leads to the optimization of distributed database
queries at the global optimization level. Then, according to the basic principle of genetic algorithms, combined with the
characteristics of the biological immune system, an improved immune genetic algorithm is proposed. The improved
immunogenetic algorithm is applied to the database multi-connection query optimization technology, and the distributed
database multi-connection query optimization algorithm based on the improved immunogenetic algorithm is designed. In
the simulation experiments, a set of optimal parameter values applicable to the system is obtained through continuous
experiments, and the distributed multi-connection query is optimized with this set of parameter values, which achieves
the expected optimization effect. The final experimental results show that the improved optimization algorithm has a
significant improvement in terms of query cost compared to the base algorithm in dealing with distributed database query
problems. Meanwhile, under the same conditions, the basic algorithm is used to test and compare the communication cost,
mean and standard deviation of the optimal solutions obtained by the two algorithms, and it is concluded that the
optimization algorithm in this paper can obtain better solutions and better stability.
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1 Introduction

With the rapid development of Internet technology and the rise of the smart city concept, the amount
of information data has shown unprecedented exponential growth in production, life and work [1-2].
In particular, the rapid development of social networks and video sharing platforms, as well as the
widespread deployment of urban video surveillance networks, have made the shape of data far beyond
the scope of simple textual information [3-4]. Traditional relational databases, structured to manage
data in the form of rows and columns, predefine the structure of the table and deposit data according
to the individual fields of the table [5-6]. Modern data, on the other hand, not only includes traditional
text, but also covers images, videos, audios, and diverse data from various sensor networks, which
are usually categorized as unstructured data, and can be transformed into more structured vector data
through embedding techniques or other transformations, which can then achieve efficient similarity
retrieval of images, audios, and other contents [7-9].

In today's data processing industry, the rapid growth and diversity of data puts higher requirements
on distributed database systems, making them an indispensable part. In this scenario, vector indexing
techniques have been emphasized for their significant role in improving the efficiency of data retrieval,
especially in the areas of image search, natural language processing and recommender systems [10-
13]. Integrating this technique into distributed database systems not only improves the speed of
querying, but also speeds up the process of data retrieval and analysis, which is extremely crucial for
handling huge datasets and meeting the demands of real-time applications. The applications of vector
data in various fields such as similarity search, recommender systems, natural language understanding
and computer vision demonstrate its wide impact and important role in the current data processing
field [14-16]. Therefore, exploring and optimizing vector indexing in distributed databases not only
has a wide range of application potentials, but also is of key significance in realizing the efficient
operation of vector indexing in database systems, which provides a strong technical support to cope
with the complex challenges faced in the current data processing field [17-18].

Distributed database systems can be obtained by using centralized database technology as a base and
then combining it with computer networks. The difference between the data in a distributed database
and a centralized database is that the data is stored in a decentralized manner in different sites of the
network, and the databases in all sites have the ability to be processed independently [19-20]. And
each site needs to be involved in the execution of the global application, which utilizes the results of
the existing network topology for the purpose of communication and access to the data dispersed in
each site [21-22]. However, due to the actual application and operation links, the distributed network
will not be felt, but the operation does belong to the whole database system, so it leads to the fact that
although the distributed database will be physically dispersed in each site, but logically it still belongs
to the same database system's dataset, and this leads to a certain degree of complexity in terms of
query processing [23-25].

Therefore, exploring and optimizing vector indexing in distributed databases not only has a wide
range of application potentials, but also is of key significance in realizing the efficient operation of
vector indexing in database systems, which provides a strong technical support to cope with the
complex challenges faced in the current data processing field [26-27].

The article firstly gives a brief introduction to the definition of distributed database system and its
structural characteristics, then analyzes the cost estimation of system query optimization on the basis
of distributed data query optimization objective, and then elaborates the distributed database query
optimization process under the global optimization level from the perspectives of query search space
and query search strategy. Then the bio-immune property is combined with a genetic algorithm to
propose a new distributed database connection query optimization algorithm based on an improved
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immunogenetic algorithm. In the experimental tests, the algorithm proposed in this paper is applied
in a computer network system, and it is analyzed and compared in simulation experiments. In a
random network topology with 30 nodes and 58 nodes, the immunogenetic algorithm and the basic
algorithm are also used to find the optimal path for querying, compare the convergence curve, the
final communication cost, and the mean and standard deviation of the same number of times of
running, so as to verify the superiority of the algorithm proposed in this paper.

2 Distributed Database Query Optimization Research
2.1 Distributed database systems

2.1.1 Definition of a distributed database system

Distributed database system is usually a number of smaller and independent computer systems
distributed in a computer network on a number of sites, each computer system is a relatively
independent of the complete whole, which can be regarded as a centralized database, with its own
independent database, database management system and the underlying hardware and software, etc.,
and are able to independently complete the work of the local site, the various sites of the computer
system through the computer network connected to form a logical whole similar to the centralized
database operation. Computer systems at each site are connected through a computer network to form
a logical whole similar to the operation of a centralized database.

2.1.2 Distributed database system structure and features
Distributed database systems have the following characteristics:
1) Site autonomy

Distributed database system, each site has a local data management system, CPU, memory,
hard disk and other equipment, in addition to storing the corresponding data, there are
independent handling of the corresponding transactions and management of its site data
capabilities.

2) Data distribution

Distributed database data distribution is mainly reflected in the various functional components
and their data are scattered and stored in different sites, these nodes are connected by the
computer network, the master node is responsible for the management and control. Users in
the process of operating the distributed database, can not see the data specifically stored in
which subsystems, how the internal data distribution, but also not clear which operating
system is used at each site of the database. This physical distribution of data decentralized
users cannot feel the characteristics of the data shared through the network, which makes the
user experience and operation of centralized databases no different.

3) Logical integrity of data

According to user needs and developers' practical considerations, the data in distributed
database are scattered and stored in different network sites, in which each site is similar to the
subsystem of centralized distributed database, which has its own local data management
system, CPU, memory, hard disk and other equipments, and it is a relatively independent
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database system, which is not only able to carry out the self-management and maintenance of
subsystems, but also able to It is a database system with relative independence, not only
capable of self-management and maintenance of sub-systems, but also capable of handling
data transmission between sites. In order to ensure the consistency and integrity of data, the
database management system carries out unified management of subsystems distributed on
each site through network communication [28]. The distributed database system network
structure can be seen in Fig. 1.
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Figure 1. Network structure of the distributed database system

4) Data redundancy

Data redundancy is unique to distributed databases, centralized databases do not have, because
distributed databases are based on the requirements of the data stored in different sites in the
network, and through the computer network connected to each site to achieve unified control,
so the redundancy of the data is critical to distributed databases need to focus on consideration.
Distributed database data redundancy enhances the reliability of the distributed database to a
certain extent, when a network site has a problem that causes the system can not run normally,
the distributed database system through the network communication can be accessed from
other sites to obtain the relevant data to ensure the normal operation of the entire system.
When the user accesses the data, the distributed database system can effectively select data
copies according to the query strategy, improving data access efficiency. The network
architecture of the distributed database system is shown in Figure 2.
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Figure 2. Network architecture of the distributed database system
2.2 Distributed Database Query Optimization Analysis

2.2.1 Distributed Query Optimization Objectives

In a distributed database system, since the databases on each network site store different data and a
query operation generally involves data transfer across sites, the efficiency of a distributed database
query optimization can generally be measured from two aspects for distributed databases. On the one
hand, it can be measured from the query cost generated by the query execution plan, i.e., the
communication cost and site I/O cost and CPU cost generated by the inter-site data transfer of the
query execution strategy can be considered. On the other hand, it can be considered from the length
of the response time of the user query request, that is, the user issued a query request to the completion
of the query plan to return the query results generated by the time, in general, the shorter the query
response time, the higher the query efficiency, this kind of query evaluation criteria has a very
important practical needs of the significance of the user is generally also extremely concerned about.

2.2.2 Distributed Query Optimization Cost Estimation

In distributed databases, the communication transmission cost between sites is generally high, and to
minimize the total query cost and minimize the total response time, it is necessary to focus on the
communication cost.

In distributed database query operations, the query cost that affects the query response time is usually:

CTo'tal = CCPU + CI/O + CMessage (l)

The communication cost of inter-site data transfer is usually:

CMessage = CInception + R * X (2)

where C.,, isthe query cost and value that affects the timeliness of the distributed database query

response. C,,, is the cost incurred by the input and output of the device at the site: C.,, is the
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surrogate value incurred by the database memory at the site. C is the communication cost

Message
incurred by inter-site data transfer in a computer network. R is the inter-site data transfer rate, i.e.,
the time taken to transfer one unit of data in seconds per bit, generally related to the site hardware
and communication network [29]. X is the amount of data transferred for site communication in
bits. C, .oion 18 the cost of time required to initialize the site data communication once, the value of

which is generally related to the site hardware equipment in seconds.

2.2.3 Distributed Query Optimization Hierarchy

In the distributed database data query process, a query optimization process often includes four parts:
data query decomposition, data localization, data global optimization and data local optimization. The
distributed database query optimization structure is shown in Figure 3.
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Figure 3. Distributed database query optimization layer structure

2.2.4 Distributed Query Optimization Process

The cost model for data query optimization is set according to user requirements and network
conditions. With the set cost model, quantitative query computation can be carried out on all solution
sets in the search space as a way to provide data basis for selecting a better query execution plan. The
search strategy of the query execution process determines the final order of the query execution plan
based on the search space, and specifies the data processing strategy, so as to achieve the purpose of
reducing the cost of query execution and shortening the query response time. The distributed database
query optimization process is shown in Figure 4.
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Figure 4. Query optimization process of distributed database
3 Distributed database connection query optimization techniques
3.1 Immunogenetic algorithms

3.1.1 Genetic algorithms

Genetic Algorithm is an adaptive global probabilistic search algorithm, which uses probabilistic
optimization method to find the best, and can automatically acquire and optimize the search space,
adaptively adjust the search direction according to the environment, which is a bottom-up
optimization method. Genetic algorithms represent complex problems with simple coding, process
the coding of a set of variables, and guide learning and determine the direction of the search through
genetic manipulation of a set of coded representations and the natural selection of the best and the
worst.

3.1.2 Immunogenetic algorithms

Immunogenetic algorithm is a kind of optimization algorithm that combines the advantages of the
basic genetic algorithm with the characteristics of biological immunity theory, and it is a kind of
optimization algorithm that combines and penetrates the knowledge of multiple disciplines and fields.
Immunogenetic algorithm process is:

1) Set initialization parameters and randomly generate a certain number of individuals to form
the initial parent population A .

2) Select a certain number of individuals with high adaptation from the initial population as
vaccine extraction based on prior knowledge.

3) Judge whether the current population has contained the best individuals, if so, the algorithm
ends. Otherwise, enter the following steps.
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4) Operate on the individuals according to the concentration and fitness of the individuals in the
population to replicate the high-quality individuals into the next generation.

5) Perform crossover operations on individuals in the current K nd generation parent population
A, according to the set crossover probability to obtain population B, .

6) Perform mutation operation on individuals in population B, according to the set mutation
probability to obtain population C, , and return to step (3).

3.2 Immune Genetic Algorithm for Query Optimization of Multi-Join Expressions

3.2.1 Encoding of multi-connected expressions

The ordered string encoding (real number encoding) method operates by first numbering the n
relations contained in the query starting from 1, and then forming the chromosome in the numbering
order of the bottom-up leaf nodes of the left linear tree [30]. The antibody coding diagram is shown
in Fig. 5. The left linear tree as shown in the figure is genetically encoded as (R2, R3, R1, R4).

Join )
/\
Join ) R4 )
/\
Join ) R1 )

PN

R2 ) R3 )

Figure 5. Antibody coding diagram

3.2.2 Adaptation function

Setting the antibody evaluation criteria focuses on the fitness of the solution to the problem. When
using immunogenetic algorithms, it is very important to select suitable antibodies as well as to
determine a realistic antibody expectation, and here we use the sum of records of the operation results
to determine the cost of the query execution plan. For this problem, the following fitness function is
used.

1
15, @

F(x) =

>

Il
N

n

Where X is the antibody and S,(i=12,---,n—1) to represent the intermediate relationship.

When the immune system is invaded by an antigen, it will secrete the corresponding antibody through
B cells to defend against the invading antigen and eventually destroy the antigen, and this stress
response behavior of the immune system is based on the concentration of antibodies. Accordingly we
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correspond antigen, B cells and antibodies to the problem to be solved, a feasible solution to the
problem to be solved X;, and the fitness function of the solution f(x;). In a non-empty immune

system X set consisting of N antibodies, the vectorial distance of antibody (%) from another
antibody is:

P)=31 100~ £(6)] @

From the relationship between concentration and vector distance, the concentration of antibody
f(x,) can be expressed as:

1

Density(x.) = =
PO S ()~ £ ()] ®

The selection probability based on antibody concentration can be derived from Eq:

1 F00) - F(x)]
P(Xi) — Np(xi) — j=1 (6)

2.P(x) >0~ ()]

i=1 j=1

3.2.3 Operational Arithmetic Design

Genetic operators mimic the process of biological inheritance and natural evolution to achieve the
superiority of individuals in a population. There are mainly 3 kinds of genetic operators: selection,
crossover and mutation. The following are the arithmetic rules of the 3 types of operators designed
for multi-connected query trees.

1) Selection operator

It is shown that the probability that the genetic algorithm with the strategy of preserving the
best individual converges to the optimal solution is 1. Meter with the optimal preservation
selection strategy, the least costly connected tree in the current population does not participate
in the crossover and mutation operations, and the costly individuals are eliminated [31]. This
makes the current optimal individual pattern will not be destroyed by the crossover and
mutation operations, which ensures the convergence of the immunogenetic algorithm.

2) Crossover operator

The crossover operator is to recombine the genes of both parents selected in the selection
operation. A new generation of individuals can be obtained through the crossover operation,
and the new individuals combine the characteristics of their parent individuals. Crossover
embodies the idea of information exchange. Crossover operation generates new individuals
by exchanging part of the genes of two parent individuals under certain probability.
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In this paper, two-point crossover is used, and when two parent individuals crossover, the
individual is generated by selecting a part of parent 1 and preserving the relative order of the
table in parent 2.

For example, there are two parent individuals P1 and P2 encoded using the ordered string
coding scheme, and two crossover points “|” are randomly selected.

P1: (RIR2R3R41R5R6R71R8R9)
P2:(R4R8RIR11IR6R7R31R2R5) 0

First, the segment before the first intersection is kept constant to obtain:

AF1: (RIR2R3R4| XXX | XX)
AF2: (R4RBRIRL| XXX | XX) ®)

Then, parent individual 1 starts encoding backward from the first bit after the first intersection, and
when it reaches the second intersection, it continues to encode backward from the first bit of the
second intersection until the end of the table, so that the coding arrangement of the linkage table
encoded by parent individual 1 from the first bit after the first intersection can be obtained as R5-R6-
R7-R8-R9-R1-R2-R3-R4. For the parent individual 2, there are already connection table codes R4,
R8, R9, R1, remove them from the connection table code arrangement of the parent individual 1 to
get the arrangement R5-R6-R7-R2-R3 and then copy this arrangement to the parent individual 1, the
starting point of copying is also from the first bit after the first intersection point, so as to determine
the unknown code X in the corresponding position of the child individual 1, which is then born as
individual 1:

AF1:(R4R8RI9R11R5R6R71R2R3) 9)

Similarly, subindividual 2 can be generated as:

AF2:(R1IR2R3R41R6R7R51R8R9) (10)

Duplication and crossover cannot produce new genes although they can produce new strings of genes,
and if all gene strings are identical at a given position, the characteristics characterized by that gene
do not change.

The probability formula for crossover is:

A=) g7

P fmax — f (ll)
b O<a,b<1

where f__ is the maximum adaptation value in the population. f is the average adaptation value

of individuals in the population in each generation. f' is the fitness value of the individual with the
larger fitness value among the two individuals to be crossed.

3) Mutation operator: the introduction of mutation operator makes up for the shortcomings of
selection and crossover operation that can only produce new gene strings but not new genes,
and ensures the continued evolution of biological populations. Mutation operations are mainly
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in the following ways: uniform mutation, single-point random mutation, and multiple pairs of
locus transposition. In this paper, uniform mutation is adopted. The mutation probability
function is:

P, =exp(—p(x)*exp(-a*1/ p(x)))(0 <a <1, Conditional variation) (12)

In this paper, we use single point gene transposition for gene mutation. The single point gene
transposition operation is to take two positive integers 1, J(I <1, j<n,i# j) atrandom and exchange

the position of a pair of gene loci R,R; in antibody R with a certain probability for antibody
R=(R1, R2, R3, R4,...Rn) (n is the number of linkage tables).

3.2.4 Algorithm flow

The basic idea of vaccination is to immunize and immunoselect the antibody population on the basis
of reasonable extraction of vaccine, to overcome the blindness of crossover and mutation operations
in the genetic algorithm, to improve the antibody adaptation value and to inhibit the degradation of
the population. In order to suppress the phenomenon of population degradation in the genetic process
and speed up the convergence of the algorithm, the immunogenetic algorithm in this study is based
on the vaccine mechanism of IGA, with the core of the three steps of extracting vaccine, vaccinating
vaccine, and immune selection operation.

4 Experimental analysis
4.1 Simulation experiment and performance analysis

4.1.1 Experimental environment

The execution efficiency of the experimental system varies in different operating environments. The
experimental environment used in this paper consists of the mainframe computer running the system
(Serverl) and two database servers (Server2 and Server3), and the three machines are interconnected
to become a small local area network (LAN).

4.1.2 Optimization of system parameters

Immunogenetic algorithm, like other non-exhaustive search strategies, different parameters have a
great impact on the performance of the algorithm, so the optimization strategy based on genetic
algorithm needs to carry out the optimization of the algorithm's own parameters first. So we first
explore the relationship between the average values of the optimal solutions in the last 10 generations
obtained when the genetic algorithm evolves to the corresponding number of generations under
different parameters.

First, let's investigate the performance of the genetic algorithm under different crossover rates. When
we set the crossover rate Pc of the immunogenetic algorithm to be 0.4, 0.6, 0.8 and the number of
connections to be 8, the performance of the immunogenetic algorithm under different crossover rates
is shown in Fig. 6. In the results shown, we can see that when the crossover rate Pc = 0.4, the
convergence of the genetic algorithm is better. When Pc =0.8, the average value of the optimal
solution for the last 200 generations is worse than the other two cases and the genetic algorithm
converges slower. When Pc =0.6, the average value of the optimal solution and the convergence speed
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are better than the other two cases. The crossover rate Pc=0.6 is the best choice when considering
both convergence speed and the average value of the optimal solution.

60

B Pc=0.4]  |Pc—0.6] Pc=0.8

501

Query execution cost (s)

0 = T T T T T T
10 20 50 100 150 200

Population evolution algebra

Figure 6. The performance of the immune genetic algorithm in different cross-rates

Next, we examine the performance of the genetic algorithm with the initial population size, pop_size,
varying in size. In general, if the initial population is small, it can improve the efficiency of the
immunogenetic algorithm operation, but due to the reduction of the diversity of the population, it is
possible that the algorithm will be premature. And when the initial population is larger, although it
reduces the efficiency of the immunogenetic algorithm, but it is conducive to the algorithm to solve
in a larger space. In this paper, when the number of connections is set to 8, the initial population size
of the immunogenetic algorithm is 30, 50 and 70 respectively, and the execution cost of the algorithm
is shown in the figure below. The performance of the immunogenetic algorithm with different initial
population sizes is shown in Fig. 7. The performance of the algorithm with an initial population size
size of 30 is better than the population size of 50 and 70 cases, and the performance of the algorithm
with a population size of 50 is intermediate between the population size of 30 and 70. So, the initial
population size size taking the value of 30 is a better choice.
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Figure 7. The immune genetic algorithm performs in different initial population sizes
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4.1.3 System performance comparison

In this paper, we compare the performance of dynamic programming algorithms and immunogenetic
algorithms by conducting comparative simulation experiments. The control parameters are set
according to the initial population pop_size=30, crossover rate 0.6cP=, and mutation rate 0.08mP=
obtained from the previous experiment. Input the parameters into the genetic algorithm program, each
query is executed 10 times, and the query execution time is taken as the average of the 10 executions,
when the number of relations we want to optimize is 4, the final genetic algorithm and the dynamic
programming algorithm get an average execution time of 5 and 6 seconds, which is not a big
difference. However, when the number of relations starts from 12, there is a significant difference in
the query execution cost, and the comparison of the optimization performance of the immune genetic
algorithm and the dynamic programming algorithm is shown in Figure 8. According to the analysis
of the results in the figure, when the number of relations connected by the query is less than 10, the
cost of the two algorithms is basically the same. However, when the number of relations connected
to the query is greater than 10, the immunogenetic algorithm query optimization is significantly better
than the dynamic programming algorithm, in the number of relations connected to the query
optimization of the immunogenetic algorithm are 16 and 20, respectively, the cost of the execution of
the query optimization is better than the cost of the dynamic programming algorithm execution of the
cost of 22% and 37.5%, respectively.
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Figure 8. The optimization performance comparison
4.2 Performance Experiments on Query Optimization with Immune Genetic Algorithm

4.2.1 Experimental environment

Although the experiments in this thesis mainly focus on the query optimization problem for
distributed type databases, due to the limitations of the experimental environment, the simulation
experiments were ultimately conducted on only one computer.

4.2.2 Experimental results and comparative analysis

In the course of this simulation experiment the focus is on checking the network cost characteristics
of this algorithm and the stability of the algorithm on the distributed database query optimization
problem. The tests are carried out in a number of 30 as well as 58 network nodes respectively. It is
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assumed that the network node issuing the query command is 3, i.e., the source node S, and all the
query data required to complete the query command is distributed in 5 nodes, 4, 6, 8, 10, and 12, i.e.,
the target node E. How to connect from the source node S to the target nodes through a certain path
with the lowest possible communication cost is the focus of this experiment. The performance is also
to be compared. So in this simulation, in the same environment and the same network topology
relationship, the basic ant colony algorithm is used and also simulation is done so that the optimization
algorithm can be compared. The results of the simulation experiment are as follows:

1) The network topology relationship graph (30 nodes) is shown in Fig. 9.

20 8= 176 = ’26 A 2 259
| A Ve o N
DN BT
Ty Bpk | N
3 D7 284
a\ \ N\ 24/
467 ‘ \ l‘: 6%/ 5‘1407 — o 2{7/9’ 30@
N I 2 0y

Figure 9. Network topology diagram

The optimal crawling path (30 nodes) for the immunogenetic algorithm is shown in Figure 10. As can
be seen from the figure, the solid dots indicate the target nodes, and the thicker lines connected
together represent one of the best paths searched by the algorithm.

Figure 10. The optimal crawling path of immune genetic algorithm

In order to prove the advantage of the algorithm, simulation experiments with the basic ant colony
algorithm were also done in the same environment used for comparison. The basic immunogenetic
algorithm optimal solution crawling path is shown in Fig. 11.
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Figure 11. The basic immune genetic algorithm is optimal

Separately, both algorithms have been utilized to find the target node in the same environment, so
how do they perform in terms of communication cost respectively? In this simulation experiment,
since it is operated on one computer experimentally, the I/O cost and CPU cost are the same for both
algorithms, so we only compare the communication cost. The communication cost here refers to the
communication time, including the time within the node and the time on the link. When the network
topology is generated in advance, the communication time on all the paths is set using a randomized
method, and at the same time, the communication time on each node is also effectively set in
milliseconds. In Immunogenetic Algorithm, the division is carried out while 50 effective iterations
are performed. The immunogenetic algorithm query convergence curve (30 nodes) is shown in Fig.
12. The optimal communication cost obtained during the optimization of the immunogenetic
algorithm is: ans=359.0032. The basic immunogenetic algorithm query convergence curve (30 nodes)
is shown in Fig. 13. The optimal communication cost obtained during optimization as per the basic
algorithm is: ans=475.1463.From the figure, it is clear that the optimal solution found by the
immunogenetic algorithm is less in terms of communication cost than the solution found by the basic
immunogenetic algorithm. The basic ant colony algorithm starts out with a communication cost of
about 560, which decreases relatively quickly in the early stages of the algorithm, but when four
iterations have been made, the rate of decrease in communication cost slows down significantly, and
by about generation 5, it is close to convergence and falls into a local optimum, and the
communication cost no longer decreases, at about 472. The immune genetic algorithm in the
beginning of the communication cost reduction rate is not as fast as the basic ant colony, in the 3rd
generation there is a short stagnation of the algorithm, with the operation of the smoothing mechanism
and learning mechanism, the algorithm jumps out of the stagnation state, continue to search, to about
10 generations before it begins to converge, at this time the communication cost has been reduced to
361, in this aspect of performance compared to the basic algorithms is relatively good.
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Figure 12. Immune genetic algorithm query convergence curve
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Figure 13. Basic algorithm query convergence curve

2) Network topology of 60 nodes
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Using the same algorithm and the same parameters, the same simulation was conducted on

the simulated network topology of 58 nodes, and the results are as follows

topology relation diagram (58 nodes) is shown in Fig. 14.
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Figure 14. Network topology diagram

. The network
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The final solution found using the multiple ant colony genetic algorithm is listed in the figure below.
The optimal solution crawling path (58 nodes) for the immune genetic algorithm is shown in Figure
15.
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Figure 15. The immune genetic algorithm is optimal

Similarly, the basic genetic algorithm has been used for the related simulations. The basic genetic
algorithm optimal solution crawling path is shown in Fig. 16.

P

Figure 16. The basic algorithm is optimal

How does the convergence performance of the two algorithms compare for the case of a network
topology with 58 nodes? The convergence curves of the immunogenetic algorithm and basic genetic
algorithm queries (58 nodes) are shown in Figures 17 and 18. The optimal communication cost
obtained by the immunogenetic algorithm optimization is: ans=455.5255, and the optimal
communication cost obtained by the basic genetic algorithm optimization is: ans=463.2485. It can be
seen from the figure that the two algorithms begin to converge at the beginning of the basic algorithm
performs better, but this is the basic algorithm falls into the local optimal performance too early. The
immune genetic algorithm obtains the optimal solution in the 23rd generation after a short period of
stagnation in the 5th, 10th, and 15th generations. In terms of the communication cost of the final
optimal path, the immunogenetic algorithm performs better, but the advantage does not seem to be
particularly significant.
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Figure 18. Basic algorithm query convergence curve

The stability of the immunogenetic algorithm and the basic algorithm was again tested and compared
in the same environment of 60 nodes, both algorithms were run 10 times, since both the
immunogenetic algorithm and the basic algorithm randomly select routes with some probability when
finding routes, the optimal paths found could be different even though they were run 10 times in the
same environment. The stability of the two algorithms is compared using mean and standard deviation.
Comparison of the standard deviation and mean value of the running results of the immune genetic
algorithm and the basic ant colony algorithm are shown in Fig. 19 and Fig. 20. The algorithm's
stability increases as the standard deviation decreases, indicating a smaller fluctuation of the objective
function value obtained by the algorithm each time. The smaller the mean value, the better the
algorithm's optimization performance. From the figure, it can be clearly seen that the immunogenetic
algorithm is superior to the basic algorithm in terms of stability, and the optimization seeking
performance is also slightly better. So although the generation of this network topology is random
and the performance of the two algorithms will have some changes in each run, overall, the
immunogenetic algorithm outperforms the basic genetic algorithm in terms of communication cost
and is more stable.
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5 Conclusion

In this paper, the application of immunogenetic algorithm in the multi-connection query optimization
problem is studied in depth, and finally it is concluded that the algorithm in this paper has certain
advantages over other basic algorithms through simulation experiments and performance analysis.

In the environment of simulation experiments, a set of optimal parameter values applicable to
computer network systems are obtained through continuous experiments, for example, when the
crossover rate Pc=0.6 is the optimal choice from the consideration of two factors, namely, the
convergence speed and the average value of optimal solutions. By applying the experimentally
derived parameter values to optimize the distributed multi-connection query, the expected
optimization effect is achieved.

Under the same conditions, the basic ant colony algorithm is tested and it is found that the optimal
communication cost obtained during the optimization of the immunogenetic algorithm is
359.0032.The optimal communication cost obtained during the optimization of the basic genetic
algorithm is 475.1463.1t can be concluded that the algorithm designed in this paper has a more optimal
solution and better stability.
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