> SC iendo Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

APPLIED MATHEMATICS AND
NONLINEAR SCIENCES

Applied Mathematics and Nonlinear Sciences

https://www.sciendo.com

Research on Vehicle Detection Algorithm Based on Embedded ARM

Yueming Deng®f, Dan Deng*

1. Guangzhou Panyu Polytechnic, Guangzhou, Guangdong, 511483, China.

Submission Info

Communicated by Z. Sabir

Received July 2, 2024

Accepted October 9, 2024

Available online November 11, 2024

Abstract

Based on the theory of machine learning in the field of artificial intelligence, this paper proposes to use the computer
vision platform OpenCV to construct an embedded ARM vehicle detection model. Determine the ARM embedded
software and hardware and adopt Haar features for the Adaboost algorithm to design the OpenCV vehicle classifier.
Cross-compile the ARM chip using Linux to generate new firmware for OpenMV. Use the DFU tool for embedded ARM
chips to upgrade and re-burn them into the embedded development board for machine vision OpenMV. By using the
classifier file and OpenCV’s image processing algorithm, the work of vehicle detection and recognition is completed, and
the vehicle target is labeled with a candidate box in the picture and video. The results demonstrate that the algorithm in
this paper maintains the leakage detection rate and false detection rate below 5% in four different working conditions:
strong light, normal light, weak light, and nighttime, thereby fully demonstrating the effectiveness of the research
conducted in this paper.

Keywords: OpenCV; Embedded ARM; Adaboost algorithm; Haar features; VVehicle detection.
AMS 2010 codes: 65Y20

tCorresponding author.
Email address: dym3212758@139.com ISSN 2444-8656

> sciendo https://doi.org/10.2478/amns-2024-3133
opsuanccess © 2024 Yueming Deng and Dan Deng, published by Sciendo.

This work is licensed under the Creative Commons Attribution alone 4.0 License.

https://www.sciendo.com/
https://doi.org/10.2478/amns.2023.2.00338

2 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

1 Introduction

Intelligent Transportation System, also known as ITS, was created with the development of economic
globalization and information technology. It mainly refers to the traffic management system that
combines computers with image processing technology, vision technology, electronics,
communication, automation and other technologies that have emerged in recent years [1-2]. It can
realize a kind of real-time, efficient, accurate larger scope and no blind spot traffic intelligent
management system. It has an irreplaceable role in effectively improving the efficiency of
transportation, ensuring the safety of transportation, and promoting the sustainability of development
[3-4]. In recent years, researchers have made great contributions to the study of intelligent
transportation in China, and the results are remarkable. The vision-based vehicle detection in vehicle
identification and tracking technology has played a great role in promoting the intelligence of China’s
traffic management system [5-6]. Since vision-based vehicle detection and recognition technology
has irreplaceable superiority over other methods, it is of great value in terms of application value and
scientific research theory, and the market prospect is very broad [7-8].

In the traditional image processing system, PCs occupy a major position, but due to the large size of
the PC itself, poor portability, and poor stability in the outdoor long-time continuous operation,
limiting the scope of its application [9]. At present, there are also many image-processing platforms
based on other systems, most of which use microcontrollers, DSPs, FPGAs, ARMs, etc., as central
processors. Among these embedded platforms, ARM-based embedded platform systems have been
gradually used more in image processing systems due to their relatively low development cost, good
stability, fast computing speed and other characteristics [10-11]. With the continuous development of
the field of artificial intelligence, the vehicle detection algorithm based on embedded ARM has a
substantial improvement compared with the traditional method. With the gradual deepening of the
research of embedded ARM and driverless cars, how to use embedded ARM to quickly and accurately
realize the vehicle detection algorithm of driverless cars and improve the ubiquity of the detection
algorithm will be the focus of this paper [12-14].

Vehicle detection is one of the research topics of target detection and an important branch of digital
image processing tasks. Literature [15] improved the YOLO v5 network algorithm using the flip
tessellation algorithm and applied it to the vehicle detection method in order to improve the accuracy
of vehicle detection in different traffic scenarios and to reduce the false detection rate of occlusion on
vehicle targets. Literature [16] proposed a two-step detection algorithm by combining Harr and HOG
features and applied it to the detection and tracking performance experiments of multi-vehicle targets,
and the results verified the validity of the method, which can improve the target detection accuracy
and time efficiency. Literature [17] mainly uses test images closer to actual road conditions to
compare and evaluate the detection accuracy of five mainstream deep learning target detection
algorithms, namely RCNN, R-FCN, SSD, RetinaNet and YOLOV3. Literature [18] focuses on
examining the robustness and efficiency of vehicle detection in intelligent transportation systems and
discusses the effectiveness of vehicle detection algorithms in different environments through a
literature review.

In addition, literature [19] constructed a real-time vehicle recognition system based on a low-cost
embedded ARM platform and an image processing algorithm for mobile vehicle detection and
verified the system’s superior performance through testing, which can realize real-time vehicle
detection, speed measurement and license plate recognition. Literature [20] proposed an embedded
lightweight vehicle detection algorithm by combining improved YOLOv3-tiny, spatial pyramid
pooling structure, kmean++ clustering algorithm and Generalized IoU loss function, and experimental
tests found that the proposed algorithm embodies real-time performance and accuracy in multi-
vehicle target detection. Literature [21] based on the YOLOvV5 model proposed a real-time effective

Research on Vehicle Detection Algorithm Based on Embedded ARM 3

and can be deployed on the satellite platform remote sensing image vehicle detection method. The
test results show that the method can provide technical support for satellite detection in orbit.
Literature [22] proposed a real-time vehicle detection scheme using a low-power embedded graphics
processor (GPU), which contains three schemes, namely loose unfolding, tight unfolding and hybrid
unfolding, and the feasibility of the proposed scheme is verified through experimental comparisons
on the dataset, which improves the efficiency of vehicle detection.

This paper combines Haar features and the Adaboost algorithm to build a vehicle detection classifier,
which is then rewritten in a Linux/Ubuntu environment to generate new firmware for OpenMV. The
DFU tool for embedded ARM chips is utilized for upgrading and re-burning the embedded
development board of OpenMV for machine vision. In this paper, the code editing of software test
cases is completed using the VisualStudio platform and the OpenCV algorithm function library. By
using the classifier file and OpenCV’s image processing algorithm, the work of vehicle detection and
recognition is completed, and the vehicle target is labeled with a candidate box in the picture and
video. Create a dataset and evaluation indexes to evaluate the algorithm presented in this paper both
experimentally and application-wise.

2 Embedded software, hardware-related development platforms
2.1 Embedded Software Platform

2.1.1 Visual Studio development environment

Visual Studio is composed of a set of component-based development tools developed by Microsoft,
which also includes several other technologies for generating powerful, high-performance
applications [23]. In addition, Visual Studio is optimized for team-based design, development, and
deployment of enterprise solutions.

2.1.2 Open CV, a computational vision platform

OpenCV, the “Open” and “Computer Vision” in its name, represent open source and computer vision,
respectively, which together constitute this powerful open-source computer vision library [24].
OpenCV has become an important tool in the field of computer vision by virtue of its open source,
unified programming style, optimized code, convenient API interface, fast image processing
capability, and multi-platform support, which provides strong support for video image processing
tasks such as motion detection and tracking.

2.1.3 Visual Integrated Development Environment IDE

Applying the MVC pattern, the IDE can be divided into several sub-modules, i.e., Glyph Model,
Glyph Editor, Glyph Portrayer, Property Grid, Glyph Browser, Glyph model, Project Browser, Code
Editor and IDEUL.

2.1.4 Compilation platforms and tools

The command line is used to install the Linux Binscope Security Options Detection Tool, which is
compatible with all versions of Linux. In the current mainstream Linux distributions, there are SUSE
Linux 10 32-bit version, SUSE Linux 11 64-bit version, Wind River Linux 32-bit, Wind River Linux

4 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

64-bit version, etc., while in this paper, Wind River Linux 64-bit version is selected to study the
embedded ARM-based Vehicle Detection.

2.1.5 Programming Language Micro Python

Python is an open-source, free, easy-to-learn, and easy-to-use programming language with a powerful
standard library and a wide range of application areas, including web development, artificial
intelligence, data processing, and more. Its simple, straightforward syntax rules and expressions have
made it one of the programming languages preferred by developers, and it is also widely used in the
development of well-known applications and services, such as Dropbox, YouTube, Instagram, etc.
Python is a language that can be developed much faster and can be iterated quickly to meet the needs
of rapid development.

2.1.6 DFU Program Burning

Embedded program burning modes are JTAG, SWD, and DFU. The DFU program encompasses the
microcontroller DFU Demo code, PC-side upgrade program, PC-side Demo code, and related
information manuals, and so forth. The use of the DFU program not only makes it possible to quickly
upgrade the functions of the developed product, but also to update the corresponding upgrade program.

2.2 Embedded Hardware Platform

2.2.1 Machine vision module

The machine vision module uses OpenMV, a new low-power smart camera designed to be the
“Arduino of machine vision”, to create scalable machine vision modules. The OpenMV module can
be very well used in machine vision and is based on the STM32H743VI ARM Cortex M7 and
OV7725 camera as the basis for the machine vision module. For the OpenMV underlying driver and
image processing library part, some OpenCV libraries are mainly referenced in this system design
and encapsulated in C language.

2.2.2 Image sensing unit

In order to realize the image acquisition unit for sample image acquisition and grading after the
acquisition, there is a sensing unit installed near the detection position and grading position to realize
the judgment of sample position and signal presence or absence. On the front of the CCD camera is
where the detection position sensing unit is mounted among others. A sensing unit for measuring the
grade is installed in the grading unit. The sensor that is utilized is the E18-F10NK red color sensor.
In the case of the sample color and the background color, a slight difference in the situation can also
be detected and the sample color in the device is green or yellow, and the background color is white.

2.2.3 ARM chips

The native 64-bit instruction set is already supported by the latest ARM chips. In addition to the
processor architecture upgrade, the ARM processor process is also becoming more advanced with the
progress of industrial technology. The latest ARM processor has been used with a 7nm process [25].
Now the ARM chip has developed a number of series of many models. Common ARM processor
performances from low to high are ARM?7 series, ARM9 series, ARMOE series, ARM10E series, etc.,
which are widely used in mobile devices, vehicle testing program development, home appliances and

Research on Vehicle Detection Algorithm Based on Embedded ARM 5

factory production and other fields because it has a high performance, low cost and low energy
consumption and other characteristics, is widely used in cell phones Because of its high performance,
low cost and low power consumption. It is widely used in a variety of terminals and application
scenarios, such as mobile phones, laptops, and servers.

2.2.4 Data Interaction Module Unit

An SDDataStruct class is designed and created by the data interaction module, which inherits the
ISDDataStruct class and is primarily used to open the TCP server function. The data interaction
module is designed for remote communication with the onboard data processing unit and designs and
creates a SmartDevice class, which inherits the QObject class and mainly realizes the data interaction
function with the onboard data processing unit. The module is designed to create a SmartDevice class,
which inherits from the QObject class and mainly enables data interaction with the on-board data
processing unit. This module is also responsible for processing and forwarding command and data
messages sent from the ground server to the in-vehicle gateway, and ensuring that they are correctly
parsed and delivered to the target device.

3 Offline training and generation of OpenCV-based vehicle classifiers
3.1 Training of weak vehicle classifiers based on Haar features

3.1.1 Haar Characterization

Haar feature involves inputting rectangular features of an image to obtain image features of a specific
target. The principle of the Haar feature is to change the distribution of pixels by intercepting the gray
level of a specific region in an image. For example, in grayscaled images, the areas on both sides of
the eyes and the bridge of the nose of a person are darker than the other areas of the face. In a real-
time road condition monitoring system based on an ARM chip, using the positive samples of the
training model, for example, vehicle pictures at different angles, there are many differences in the
shadows of different models. The body and tire size ratio is also different for different models; the
tangent area of the windshield and the ratio of the entire front end are also different for different
models at different angles, which are considered different Haar features for different targets. Various
rectangular features as shown in Figure 1, there are three main common rectangular features, which
are two-rectangular, three-rectangular features and four-rectangular features.

Two-rectangle feature ——> H —

Trirectangular feature ———> - —

Quadrangular feature —>

Figure 1. Various rectangular features

6 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

The detection window is shown in Fig. 2 and the number of internal rectangular features is too large
for a common detector, and the arithmetic of the rectangular features needs to be calculated. The
calculation method is described below. In a window of size m#*m, only the upper left vertex

A(X,Y,) and the lower right vertex B(X,,Y,) of the rectangle need to be determined, i.e., a

rectangle can be determined if this rectangle must also satisfy the following two conditions (known
as the (s,t) condition and a rectangle that satisfies the (s,t) condition is known as a conditional

rectangle).

A% ¥r)

r— ="

B(X,,Y,)

Figure 2. Detection window

1) The length of the side in direction X must be divisible by the natural number s (equally
divided into s segments).

2) The length of the side in direction y must be divisible by the natural number t (equally
into t segments). The minimum size of the rectangle is sxt or txs, and the maximum
sizeis [m/s]-sx[m/t]-t or [m/t]-tx[m/s]-s; where [] is the rounding operator.

Determine A(X,Y.):% e{L,2,--,m-s,m-s+1},y. e{l,2,---,m—-t,m-t+1}

After obtaining point A, point B can only be taken in the shade, so there:

X, € X ={x+s|-Lx+2-s-1---, x+(p-1-s-Lx+p-s-1}
yeY ={y+t-Ly+2-t-1---,y+(q-1)-t-1y+q-t-1}
_m-x+1 q= m-y+1

1)

S t

This yields the number of all rectangles in the mxm sub-window that satisfy the (S,t) condition:

Research on Vehicle Detection Algorithm Based on Embedded ARM 7

m+s+1 m—t+1
m

co=2, 2. P4

x=1 y=l

m-s+1lm-t+1 m_Xi +1 m_yi +1
LR
x=1 y=1

_m‘zsjl{m—xi+l]mil{m—yl+l} @)
- t

M e

(Q 1is the number of features, S and t are the types of features)

The total number of all features in the sub-window where Q", is the sum of the number of various
features. l.e:

m m m m m m m
QF =05 + Q050 + Q05 T Qi +-+ Q) + Q05 ()
Since features 1 and 2, features 3 and 4, etc. have rotational symmetry, this can be simplified to:

+2-Q7

(13)

Q"=2-Q7

(1.2)

+---2:Qf (nis infinite) (4)

The pixel values of a region can be calculated using the integral of the endpoints of the region, and
rectangular features can be calculated as rectangular eigenvalues. To wit:

ixy)= 3 i0dy) ©)
X'<X,y'<y
The integral map of coordinate A(X, y) is the sum of all pixels in its upper left corner, where

ji(x,y) denotes the integral map and i(X,y) denotes the original image, which is the color value

of'this point in the case of a color image, and its gray value in the range 0-255 in the case of a grayscale
image. The characteristic integral is shown in Fig. 3, where A(X, y) denotes the integral map of

point (X, y); and S(X, y) denotes the sum of all the original images in the y direction of point

(X, y). The integral map can also be derived using Eq. (6) and Eq. (7):

s(x,y) =s(x,y=1+i(x,y) (6)

ii(x,y)=ii(x=1,y)+s(x,y) @)

8 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

() X «
S(x,y)
A(x,y)
Y

Figure 3. Feature integral

3.1.2 Constructing the training sample dataset

The Haar features and their algorithmic principles have been described in detail in the above sections.
In this section, we will target the construction of a database of forward vehicles suitable for China’s
road traffic situation, which mainly contains positive and negative samples. A suitable number of
sample datasets is not only conducive to improving the recognition rate of the classifier, but also will
effectively shorten the training time of the classifier. A high-quality training sample dataset requires
that the included samples satisfy typical usage scenarios, have low data redundancy, and contain
sample images with appropriate resolution and consistency. In the process of constructing the sample
dataset, a total of 300 positive samples were collected in this paper. Among them, some of the positive
samples are typical vehicle datasets that are publicly available on the web and are screened to select
images that meet the characteristics of having a vehicle in front of them as an alternative to the sample
dataset.

3.1.3 Sample Image Preprocessing

To improve the extraction of Haar features from the sample dataset constructed above, it is also
necessary to perform image preprocessing on the sample dataset, which mainly involves size
normalization and grayscaling processing.

1) Size normalization

The size normalization processing is to exclude the interference of pixel factors on Haar
feature extraction and computation, because the positive and negative samples with different
pixel sizes have different feature values and number of features when they are subjected to
Haar feature extraction and computation. The recognition effect of the resulting classifier will
be seriously impacted if samples with different pixels are used during classifier training.
Therefore, it is necessary to normalize the size of all positive and negative samples in the
sample dataset and batch process them into images of 24 x 24 pixels for classifier training.

2) Grayscale processing

It is to convert color images into grayscale images. The intensity values for color images are
between 0 and 255, and the same holds true for grayscale images. Black is 0, white is 255,
and the color gradually fades from black, fading with different gray values, and finally
transitioning to white.

Research on Vehicle Detection Algorithm Based on Embedded ARM 9

The use of grayscale images instead of color images in the image preprocessing process is to
reduce the amount of information to be processed and to speed up the detection of subsequent
vehicle features. Color images have a lot of information, which makes the processing process
complex and increases the amount of computation. In contrast, grayscale images have 2 bits
less image depth compared to color images, so the amount of computation required is
relatively less. In addition, from the point of view of local color, length, width, and other
distribution characteristics, the two are identical, so the image is grayscale.

In accordance with the importance and other indicators, a weighted average algorithm is
adopted for the three RGB components. The weights of each component are distinct, and the
OpenCV library’s grayscale weights can be utilized. In addition, a weight value can be
proposed based on human biology (the human eye is most sensitive to green and least sensitive
to blue). Namely:

Gray =0.07216B +0.71516G +0.21267R (8)

Gray = 0.11B +0.59G +0.3R 9)

3.1.4 Constructing weak classifiers

In the previous section, the construction of the stop-negative sample dataset, the sample image
processing and the extraction of Haar features are completed before and after, and in this section, the
construction of a weak classifier will be carried out based on the above Haar features and feature
values. Classifiers that have a correct rate of object classification above 50% are called weak
classifiers. Although its correct rate is not as high as those of the strong classifiers and cascade
classifiers discussed in the next section, the weak classifiers are characterized by simple mathematical
structure, small computation, and high real-time performance.

Each Haar feature has a corresponding weak classifier; it may be assumed that fn(X) is the
eigenvalue of the N nd Haar feature, and its weak classifier can be expressed by Eq. (10) as:

L p, , (%) < P60,
h =
() {0, otherwise (10)

Where the classification result of the weak classifieris N (X), and its value 1 means for the presence

of vehicle target objects and 0 means the absence of vehicle target objects. P, is the direction
parameter of the inequality, which takes the value range of {1, -1}, with 1 indicating that the inequality
has the sign of less than sign, and -1 the opposite. 8, is the feature value of the weak classifier h, (X),

1.e., the classification threshold, and this threshold is the key to construct the Haar feature weak
classifier. An appropriate threshold reduces the sample classification error rate of the weak classifier
for Haar features over the entire sample set. The most appropriate threshold value should result in
minimizing its classification error rate.

10 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

3.2 Cascade Classifier Based on Adaboost Algorithm

3.2.1 Adaboost algorithm

Adaboost’s goal is to enhance the accuracy of the classifier judgment through multiple iterations. The
weak classifier (which is the vehicle weak classifier built on Haar features in the previous section) is
trained with the same weights as all the training samples at the start. In the Nth iteration, the weights
of the samples are determined by the results of the N-1 iteration. In other words, the results of the last
iteration determine the weights of the current samples: at the end of each iteration, the weights of the
samples are adjusted once, and the weights of the incorrectly categorized samples will be raised. After
each iteration, the weights of the samples will be adjusted, the weights of the misclassified samples
will be raised, and the misclassified samples will become visible, leading to a new sampling
distribution. So on and so forth, under the new sample distribution, the weak classifier is trained again
to obtain a new weak classifier. A strong classifier can be formed by combining N weak classifiers
with specific weights after N iterations.

3.2.2 Candidate boxes

The specific settings of region candidate frames are shown in Table 1. The region candidate frames
of each feature map layer of the Adaboost algorithm have different aspect ratios,

a, € {l, 2,3,1/2,1/ 3} , in order to enhance the robustness of the detection of different shapes of the
target in the Adaboost algorithm conv4_3, fc7, conv8_2 are treated as the prediction of the

feature maps, and each feature map generates a certain number of region candidate frames with
different aspect ratios. If the feature map size is m X m and the number of region candidate frames
with aspect ratio is k, then this prediction layer produces m x m x k region candidate frames.

Table 1. Regional candidate box specific Settings

Feature map conv4d_3 fc7 conv8_ 2
mxm 45%45 28x28 15x15
K 4 6 6
Number 5638 2033 575
1:1 35x35 55x55 95x95

3.2.3 Adaboost Cascade Classifier

The traditional boosting algorithm is to randomly select weak classifier samples to improve their
value, but this method cannot accurately classify the weak classifiers. Adaboost cascade classifier is
shown in Fig. 4. The Adaboost algorithm utilizes the error data of previous weak classifiers to train
the next weak classifiers, which reduces the weights of the accurate classifiers in subsequent training.
Training; at the same time, it also improves the weight of the unclassified weak classifiers to realize
adaptive classification; finally, it modifies the weight of each classifier through this decisive
generation to integrate into a strong classifier. The algorithm’s specific steps are as follows.

1) Given n training sample (X, Y,): (%5, ¥,)=*(X,,Y¥.) , where Y, =1 denotes a positive
sample and Y, =-1 denotes a negative sample.

Research on Vehicle Detection Algorithm Based on Embedded ARM 11

2) Initialize the weights of the positive and negative samples, m,| being the number of positive
and negative samples, respectively:

Zi' Positive sample
o, =14 (11)

%, Negative sample

3) The weak classifier built for each extended Haar-like matrix feature j is:

1, pf(x)<pd

i 1f’ 10 =
g,(.T.p.6) 0, other (12)

Where X is the target feature window, f is the feature value, p is used to adjust the direction

of the inequality sign, and & is the threshold of the feature value. Take all the weak classifiers for
T iterations, for t=12..-T .

1) Normalize the weights:

@ ;

v 13
Yo, (13)
j=1

;=

2) For each feature weak classifier j, find its weighted error:
gjzza)i,jlgj_yi| (14)
i=1

3) Select the classifier g, with the smallest weighting error &; and update its weights:

Bi =05 - (15)

&
Where, [= 1 —, if the feature window can be classified correctly, e =0, otherwise e=1
i

4) After T rounds of iterative training, the final strong classifier is obtained:

T 1 T
G(X) _ 1’Zatgt(x) Zztz:l:at

t=1

0, other

(16)

1
a, =10g— of them.
t

12 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

Haar-like strong Haar-like strong Haar-like strong Identified as a
classifier 1 classifier 1 classifier 1 target
Non-target Non-target Non-target

Figure 4. Classification principle of cascade classifier
3.3 Classifier Loading and Testing

3.3.1 Linux-based firmware secondary development

The underlying algorithms of the OpenMV module are written in C/C++ language in modules, and
the commonly used image processing algorithms and embedded system underlying related software
frameworks have been encapsulated during the development of the software architecture, and one by
one submodule are invoked in the application layer using the interpreted language MicroPython.

The so-called secondary development of firmware is to rewrite or rewrite the required image
processing functions or recognition algorithm modules in the Linux/Ubuntu environment to generate
new OpenMYV firmware and then use the embedded ARM chip’s DFU tool for upgrading and re-
burning it into the embedded development board of OpenMV for machine vision.

3.3.2 Generating Classifier Files Based on OpenCV

In the above section, the training principle of the cascade classifier has been described and analyzed
in detail, and the classifier file needed for the forward vehicle online detection algorithm is made by
calling opencv_traincascade in OpenCV. The exe file was generated by performing cascade classifier
training. The process of creating the classifier file can be broken down into three basic steps:

Step 1: Import the training sample dataset

The training sample dataset’s construction has been explained in detail in 3.1.2 above. The classifier
will be trained by importing the training sample dataset and giving it to opencv_traincascade.exe.

Step 2: Generate the sample description file

The sample description file is available through openCV_createsamples. The exe is carried out to
generate the description file of the positive samples, i.¢., the file with the extension .vec, which holds
the description file of the positive samples for data storage in binary form. Negative samples require
the generation of a description file with the extension.dat, which is also necessary.

Step 3: Perform classifier training and .xml file generation

The opencv_traincascade will be called throughout the training process. Exe executable to train the
Adaboost cascade classifier based on Haar features. Due to opencv_traincascade. The exe file already
encapsulates the whole process of Haar feature extraction and Adaboost classifier training. Only the
positive sample description file (pos. vec) and the negative sample description file (neg. dat) from the
second step are taken as inputs, and the desired classifier configuration file (cardetection.xml) can be
obtained by training. This training process is time-consuming on PCs, and it is recommended to use

Research on Vehicle Detection Algorithm Based on Embedded ARM 13

a remote server to invoke a high-performance multi-core processor for classifier training, which can
effectively shorten the training time and improve the training efficiency.

3.3.3 Visual Studio-based platform loading and testing

After completing the training of the classifier, the configuration file (car detection.xml) of the
classifier is obtained, in order to better test the performance of the classifier.

In this paper, we use the Visual Studio platform and the OpenCV algorithm function library to code-
edit the software test cases and load pictures and videos that contain vehicle targets to be tested. By
calling the classifier file and the image processing algorithm of OpenCV, the work of detecting and
recognizing the vehicle in front is completed, and the vehicle target is marked with a candidate box
in the picture and video.

4 Example analysis of vehicle inspection
4.1 Algorithm Validation Analysis

4.1.1 Evaluation indicators

Both object classification and localization in the target detection task need to be evaluated, and the
measure of target detection accuracy is mAP, which consists of two components: accuracy and recall.
The accuracy and recall of each target detected by the network are corresponding. Since each input
image in target detection corresponds to multiple targets with multiple labeled inputs, and the network
has to predict the category score and location coordinates of each target, its mAP computation step is
more cumbersome than that of a classification network.

This subsection detects cars and other targets, and is a binary classification problem where the
ultimate goal is to correctly detect all cars without treating other targets as cars. There are four cases
of detection result: TP means that the target is correctly detected, FP means that the other objects are
treated as cars, FN means that the cars are detected as other targets, and TN means that the other
targets are not detected as cars, and the interrelationship of these four cases is shown in Fig. 5.
Accuracy is measured by the ratio of positive targets to all targets detected. Recall refers to the ratio
of detected positive targets to all positive targets in the whole dataset, i.e., whether the network can
find as many cars as possible in the picture. The level of accuracy represents the network’s ability to
recognize the target category, while the recall represents the size of the network’s ability to recognize
the target. The accuracy and recall are calculated in the following equation:

precision = L (17)
TP+FP
recall = — (18)

TP+ FN

14 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

Relevant elements

True positive

Selected element
Figure 5. Four kinds of relationships

For a particular class of tests, the category scores output by the network are sorted from high to low.
The corresponding accuracy and recall are calculated from top-1 to top-n. As the test sample increases,
the accuracy decreases, and the recall increases. Recall is X -axis and accuracy is y -axis, and the

accuracy-recall curve is plotted as shown in Fig. 6. A well-performing detector can increase recall

while ensuring higher accuracy, and a poorly performing detector may need to lose a significant
amount of accuracy in exchange for the trade-off with recall.

l'O 1 1 1 1 1 1 (| 1 I

I 1 | 1 | 1 | i |
____L___ILO.EO.J'.___J.__-J.__-JI___J'___JI-__J____

91 0.909 ,0.911

0.9 DOAIIIT 00N loonn 4G

! T 1~ 0.8791 i 1
= --—-..--_L---l---l---i--_lk'qs__q'_--.:----

=] | 1 1 1 ! 1 1 1

‘® | | | | | ' | 10.802
o R R e R e
E I T T T T T N kA

A A A - R R
| SRS W SRS S . U N 0 S

1 1 1 1 1 1 1 | |
waaabwsabeaelboaalussbasatosadeoasdlinaaalascs

i i i i i i i | |

| ! | | | | | ! I
0.6 « + t 4 + + t 4 t + >
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6. Precision - recall curve

Let there be N sample of a class with M positive examples, then M recalls can be obtained:
{1/ M,2/M,---, MM } . For each recall I', the maximum accuracy is calculated as follows:

P(r)=max(p(r)) (19)

r=r

The average precision (AP) for this category is calculated as follows:

Research on Vehicle Detection Algorithm Based on Embedded ARM 15

1
AP :MZre{llM,ZlM,---,M/M} P(r) (20)

Eq. AP measures how good the algorithm is on each category, and mMAP measures how good the
algorithm is at detecting performance on all categories, calculated as follows:

i=0 AP'

MAP = (21)

In the above equation, N denotes the number of categories and AP, denotes the average precision
of the ird category.

4.1.2 Data analysis

For the specific data of vehicles, it is known from the previous analysis that it is necessary to set the
candidate box matching the data according to its distribution characteristics, in order to improve the
network detection accuracy and reduce the network complexity of the purpose. In order to set the
appropriate region candidate box for the vehicle dataset, this paper runs K-Means clustering on the
training data based on OpenCV’s vehicle detection algorithm, which mainly uses the Adaboost
algorithm as Haar’s feature extraction classifier, the region candidate box and the aspect ratio are set
around the center of the clustering, so that the region candidate width and the real box is more
compatible with the revised width and height distribution of the region candidate box. The training
data in Figure 7 is represented by the cyan points, and the colored straight lines indicate the different
aspect ratios of the region candidate frames. The original frame has been modified as follows:

1) Delete the frames with an aspect ratio of 1/3.

2) Keep only the prediction layers conv4 3, fc7, and conv8_2, and delete all the convolutional
layers behind them.

3) Set 4 region candidate boxes for conv4_3, and 5 region candidate boxes for fc7 and conv8_2
respectively, and note the changes as OpenCV_change.

300 ,
240 /

1804

Width

1207

6012

0 T)r T T T T T T T >
0 30 60 90 120 150 180 210 240 270 300
Height

Figure 7. Modified area candidate frame wide high score cloth

The mAP comparisons of the detection effects of the Adaboost algorithm and the OpenCV
(Haar+Adaboost) algorithm on the dataset are shown in Table 2 (the table contains only some kinds
of AP data). Figure 8 shows the Precision-Recall curves of several kinds of objects in target detection

16 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

in figure (a)~(d) are Car, Person, Bus, and Cat, respectively. A purple line indicates the detection
results of the Adaboost algorithm. Combining Table 1 and Fig. 8, it can be seen that the OpenCV
(Haar+Adaboost) algorithm has a map that is 4.51% higher than that of the Adaboost algorithm, and
the convergence speed is also faster than that of the Adaboost algorithm.

Table 2. mAP contrast results

Algorithm Map | Aero | Bike | Bird | Boat | Bottle | Bus | Car | Cat | Chair | Cow | Dog
Adaboost+Haar | 79.39 | 86.65 | 77.63 | 70.25 | 49.12 | 88.84 | 88.64 | 88.31 | 91.65 | 60.43 | 83.35 | 88.44
Adaboost 74.88 | 74.25 | 82.33 | 70.22 | 61.08 | 42.44 | 83.15 | 81.35 | 88.45 | 86.25 | 72.05 | 82.15
1.01__ JAdaboost”_ Adaboost+Haar 1.0 I—__,,__‘ Adaboost | Adaboost+laar

0.8- 0.8+
=] = i
2 0.6- £ 0.61
3 - 3
& 0.4- & 0.4
0.2- 0.2
2.0 —m————mF——————— (. S e e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall
(a)car (b)Person
10: — Adaboost”__] Adaboost+Haar 1.0 j‘ | .!Adabmjsll | Adaboost+Haar
0.8 0.8
g g
'Z 0.6 2 0.61
5] <
2 2
& 0.4 a (0.4

=
o
o
N

e
o
v

. . : ‘ . 0.0 . . . _ .
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Recall

o
=

(c)Bus (d)Cat
Figure 8. The precision of several objects in the target detection curve

After completing the testing and comparison of the detection accuracy of the two models on the
computer using the test data set, it is also necessary to test the running speed of the two models on
the embedded ARM development board. Image data is read directly into the OpenCV run detection
on the ARM development board through the USB camera. In the detection thread, first get the system
time before the image input network, when the image input network detection is complete, and then
get the current system time, the difference between the two for the model to detect 2000 frames of
images consumed by milliseconds. In the actual test, the OpenCV (Haar+Adaboost) algorithm detects
one frame of image in an average time of 111ms, and the overall operation can be obtained at 9.011ps.
The comparison of the detection speed of Adaboost and OpenCV (Haar+Adaboost) algorithms
running on ARM development boards is shown in Fig. 9, in which (a)~(b) are respectively Adaboost,
OpenCV (Haar+Adaboost). Considering the ARM development board is not the best mobile

Research on Vehicle Detection Algorithm Based on Embedded ARM 17

processor on the market today, and it is the test result in a GPU-less environment, it is necessary to
burn the DFU program to improve the detection speed of the OpenCV (Haar+Adaboost) algorithm.

o

162

A
o
(=]

L

Time/ms
Time/ms

=)
—

1524 r T . : 112 T ‘ . .
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
Frame number Frame number
(a)Adaboost (b)Haar+Adaboost

Figure 9. Different algorithms run on the arm development board
4.2 Algorithm Application Analysis

4.2.1 Different working conditions

In order to test the real-time and accuracy of the vehicle detection algorithm proposed in this paper,
this paper carries out a long-distance road test according to four working conditions: strong light,
normal light, weak light and nighttime, and counts the leakage rate and false detection rate of vehicle
detection under each working condition, and the time of execution of the statistical algorithm. The
accuracy of the algorithm is determined by analyzing the leakage detection rate and false detection
rate, and the real-time performance of the algorithm is determined by the average value of the
execution time of the statistical algorithm.

Under daytime conditions, the test vehicle is driven on a multi-lane highway at a variable speed of
80 to 120 km/h, and the recognition test is conducted on vehicles traveling on the highway. For each
cross-combination condition, the recognition system is activated and the test data is recorded.

Under nighttime conditions, the test vehicle is driven on a multi-lane highway at a variable speed of
80~120 km/h, and the recognition test is conducted on vehicles traveling on a single lane. The
recognition system is activated and the detection result data is recorded in different lighting situations.

In order to analyze the environmental adaptability of the vehicle detection algorithm proposed in this
paper, the vehicle detection results in continuous towel chastity are counted for different working
conditions. Statistics of vehicle detection in strong, normal, weak, and night scenes for 2000
consecutive frames of images respectively. It should be noted that because the nighttime lamp can
only illuminate this lane, so only the detection of vehicles in this lane at night daytime can be detected
at the same time adjacent to the left and right lanes of the vehicle.

4.2.2 False Detection Rate and Missed Detection Rate

To verify the accuracy and reliability of the proposed algorithm, the leakage detection rate and the
false detection rate are defined: the leakage detection rate is the probability that a vehicle leakage
detection occurs for the current frame during the whole algorithm execution; the false detection rate
is the probability that a vehicle false detection occurs for the current frame during the whole algorithm

18 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

execution. Equation (22) displays the formula for the missed detection rate and equation (23) displays
the formula for the false detection rate:

Nget
1-—% |%100% (22)

real

N getreal
1-—2l 1,100% (23)

real

Wherein, the number of true targets N, , i.e., the number of targets in the image sample that should

be recognized as vehicles, the number of algorithm-recognized targets N_,, i.e., the number of

get »
targets in the image sample that the vehicle detection algorithm determines to be considered as style
vehicles, and the number of algorithm-recognized true targets N .., i.€., the number of correct

targets in the image sample that the vehicle detection recognition algorithm determines to be style
targets.

4.2.3 Intense light analysis

Under the condition of strong illumination, Figure 10 gives the ranging data of the target vehicles in
the three lanes in the consecutive 2000 frames of images, Figure (a) ~ (c¢) for the left lane, the current
lane, the right lane, where the horizontal coordinate is the consecutively processed image tilt counts,
and the vertical coordinate is the longitudinal distance of the front vehicle from the current vehicle
calculated by the recognition software, and if the value is 0, then it indicates that the algorithm
considers that there is no vehicle target in the current lane. According to the vehicle ranging result
chart under strong illumination, the number of algorithm recognitions is counted as 1416, and by
observing the test video, the number of real targets is counted as 1466, which leads to the number of
missed detection by the algorithm as 50 times. In addition, by observing the video, it is found that
there are 8§ times that the ranging error is too large due to the influence of the bridge shadow, and the
algorithm recognizes the number of real targets as 1408. The time range of the video has a leakage
rate of 3.41% and a false detection rate of 0.56%, which can be calculated from this.

200

4
o
L

1()()*: .

Car distance/m

d
T

(]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(a)Left lane

Research on Vehicle Detection Algorithm Based on Embedded ARM 19

200
£ 1501
<
=
. .
= 32 & y -
+ 100 v 2 of - 3 S &
= P ® » b4 2o & e o
- o e $ o300, 2 3
S 50 el $ 20304
@) Tes. 9% L3 | R 3.9 ?
b b 4 & *3%e >
2 kS *
. .
0 ® 900%00 0000000000000 te S 000 o0 PR
T T T T T T T T >

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(b)Current lane
200
150
100+

50+ ’

Car distance/m

0 000 0 0 090 90 ¢ 000000 0000000000000 0 0 0000000 00000 ¢ % o
T T T T T T T T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(c)Right lane

Figure 10. Target vehicle ranging data

4.2.4 Normal light analysis

Under clear light conditions, Figure 11 gives the ranging data of the target vehicles in three lanes in
2000 consecutive frames of images, where the horizontal coordinate is the number of consecutively
processed image frames counted, and the vertical coordinate is the longitudinal distance of the front
vehicle from the current vehicle calculated by the recognition software, and if the value is 0, it
indicates that the algorithm considers that there is no vehicle target in the current lane. According to
the vehicle ranging results under normal lighting map statistics of the algorithm to identify the number
of 1557, by observing the test video, statistics of the number of real targets for 1622, which leads to
the number of algorithms missed 65 times; through the observation of the test video can be seen when
the road surface of other objects with too large a shadow (such as the shadow of the tree or the shadow
of the bridge), it is easy to produce a misdiagnosis and found that there are five misdiagnosis, that is,
the bridge shadow containing a The shadow of the bridge containing a vehicle is misdetected as a
vehicle, i.e., the algorithm recognizes the true number of targets 1552. The leakage rate and
misdetection rate in the video time range are 4.01% and 0.32%, respectively, according to this
information.

200
£ 1501
5
<o
5 % N S
% o0 ¢ ¢ =
£ 100- s a3t S 2o S
- o ‘e 82 Soe ¢ ¢ Qz%"slo
= < TIP3 > b
PR b &
NPT L - b
AL ® —af e
&) o003 * %‘,?“;r’ (}f)’ 4
o
0o S 090000000 00000090 00000000000 S NESOR o0 ¢4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(a)Left lane

20 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

200
£ 150-
s »
S $ s, & .
@ d
4 « ¢
2 100 ,%b&: % ,t:: e = “},’ s ’,&'.
= L% ¥ e, '.o,:’ * @ e *e%s
- *°, * ¢ s ¢
S S0te—— Ak S — 3
> e ¢ p B °
0 “&“?000 "00 . 3 &'0 L X 1 QTQQOQO’ QQQQA'"O“"O ’N‘,m‘ 0"0’“_

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(b)Current lane

100
£
@
%
E 75, o
3 A
= 792
g 50 s e
s “e < 9
2z 3 e 33 4 Toe N’
= 2 FR R o M A 0’3%‘;" e a&“}‘%
- s 2 e ‘N ® % * *%
= L 23 ” % %Xx"
U 25 .‘ v v &l
L 4 &
0 00‘.0‘900000‘900“00'000 00'0'0»000?00“0'00 000'0090“»’ o o' L X 1S

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(c)Right lane

Figure 11. Target vehicle ranging data under normal light

4.2.5 Low light analysis

Under the conditions of weak illumination, Figure 12 gives the ranging data of the target vehicles in
three lanes in a continuous 2000-frame image, where the horizontal coordinate is the continuous
processing of the image shouting counts, and the vertical coordinate is the longitudinal distance of
the front vehicle from the car calculated by the recognition software if the value is 0, it indicates that
the algorithm believes that there is no vehicle target in the current lane. According to the vehicle
ranging results in low light map statistics of the algorithm recognition number of 1622, by observing
the test video, statistics of the real target number of 1698, which leads to the algorithm missing the
detection of the number of 76 times; In addition, by observing the test video, it was found that the
apparent ranging errors caused by road bumps were 8 times and the algorithm recognized the number
of real targets 1614. This information allows us to calculate the leakage and false detection rates of
4.47% and 0.49% for the video time range.

200

._
U
o
S 4
*
AT
b+ L8
>

100 4 4 By, £
WS LlawVess o8
S0———%— ®

Car distance/m

0 900“0'000 290 'QQQQA!QIQQ QMIQQQ Q'QQQ 07000000'0000 0,«"0070000Q:
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

(a)Left lane

Research on Vehicle Detection Algorithm Based on Embedded ARM

Car distance/m

Car distance/m

4.2.6 Night analysis

o
S
(=]

4y
o

100

50+

0

200

150

1001

50+

0

® &
i3 o ——
i 4 ot 2
v PRV X Ll {
(s £ TXO S TIPS = © *
N e ’3‘3&%{’21 ““’:’1
0“¢of¢o %000 . ke o0 . bo‘twoot“ﬁ?ooo ’ & ®,

0 200 400 600 860 IO‘OO 1200 1400 1600 1800 2000
Frame number

(b)Current lane

k4 00
8 — 2
k2 s :
3 s 3 &
& s & ¢ 3
> b4 P b4 g } ®
“‘&3:,4:*3ﬂ':§t¢°—; T v 373
0, * L J
£e "0“ 3 e $
PEO00004 00 00 00000000000000000 0009000000000 0000 000 90 20000000000
T T T T T T T T

0 2(')0 400 600 800 1000 1200 1400 1600 1800 260()
Frame number

(c)Right lane

Figure 12. The target vehicle is ranging from weak light

21

Under nighttime lighting conditions, Figure 13 gives the ranging data of the target vehicle in the
current lane in 2000 consecutive frames of images, where the horizontal coordinate is the continuous

processing of the image shouting counts, the vertical coordinate is the longitudinal distance of the

front vehicle from the vehicle calculated by the recognition software, and if the value is 0, it indicates

that the algorithm believes that there is no vehicle target in the current lane. According to the nighttime

vehicle ranging results chart statistics of the algorithm recognition number of 948, the actual test has
been the existence of the target, the real target number of 991; in the detection process, the resulting

algorithm misses the number of 43 times; In addition, by observing the test video, it was found that

road markings caused 7 false detections, and the algorithm recognized the number of real targets 941.

Based on this information, it can be determined that the miss and false detection rates for the video

time range are 4.53% and 0.74%, respectively.

Car distance/m

100

751

504

25+

0

&
9, Q P
AL 30
:g?’ﬁ % o >3 y &; n
o Y & g@ & o 9
iFe - ’&\?& . fg“ $pugse . T 3”0‘“’“‘
4’,’”“6 2 {4 3&:@:’ <
Segees 200 o o0 o oo

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame number

Figure 13. Night target vehicle ranging data

22 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

4.2.7 Detection time analysis

In terms of algorithm time, the daytime vehicle detection algorithm consumes more time than the
nighttime vehicle detection algorithm because it has to process images within three lanes. The
daytime vehicle detection algorithm’s time consumption for 2000 consecutive frames is depicted in
Fig. 14(a), which has an average processing time of about 157 milliseconds, and the time consumption
of the nighttime vehicle detection algorithm for 2000 consecutive frames is given in Fig. 14(b), which
has an average processing time of about 118 milliseconds.

5
162 126
124 ‘
160 45 ‘
g » | \
£ 158+ £ 1209l I
E E s ‘
& 156 =
116 |
154 i ‘
152 P S S I | 73—
0 200 400 600 800 100012001400 1600 18002000 0 200 400 600 800 10001200 1400 1600 18002000
Frame number Frame number
(a)Day time (b)Nigth

Figure 14. Algorithm time analysis

5 Conclusion

Due to poor weather conditions, low illumination, or overexposure to the external environment, the
captured vehicle images are often excessively gray and have detail loss, which leads to numerous
vehicle violations. This paper proposes a vehicle detection algorithm that utilizes embedded OpenCV
to address these problems. The algorithm is validated and analyzed for applications when combined
with the dataset.

1) On the dataset, the map of the OpenCV (Haar+Adaboost) algorithm is 4.51% higher than that
of the Adaboost algorithm, and at the same time, the convergence speed is more excellent than
that of the Adaboost algorithm.

2) The algorithm in this paper has excellent performance in strong light, normal light, weak light,
night time and detection time, which confirms the effectiveness of the vehicle detection
algorithm based on embedded ARM.

References

[1] Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent transportation system (ITS): Concept, challenge
and opportunity. In 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity),
ieee international conference on high performance and smart computing (hpsc), and ieee international
conference on intelligent data and security (ids) (pp. 167-172). IEEE.

[2] Telang, S., Chel, A., Nemade, A., & Kaushik, G. (2021). Intelligent transport system for a smart city.
Security and privacy applications for smart city development, 171-187.

[3] Suryadithia, R., Faisal, M., Putra, A. S., & Aisyah, N. (2021). Technological developments in the
intelligent transportation system (ITS). International Journal of Science, Technology & Management, 2(3),
837-843.

Research on Vehicle Detection Algorithm Based on Embedded ARM 23

[4] Zhu, L., Yu, F.R.,,Wang, Y., Ning, B., & Tang, T. (2018). Big data analytics in intelligent transportation
systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 20(1), 383-398.

[5] Zhao,J.,Hao, S., Dai, C., Zhang, H., Zhao, L., Ji, Z., & Ganchev, I. (2022). Improved vision-based vehicle
detection and classification by optimized YOLOvA4. IEEE Access, 10, 8590-8603.

[6] Song,H.,Liang, H.,Li,H., Dai, Z., & Yun, X. (2019). Vision-based vehicle detection and counting system
using deep learning in highway scenes. European Transport Research Review, 11(1), 1-16.

[7] Chetouane, A., Mabrouk, S., Jemili, I., & Mosbah, M. (2022). Vision-based vehicle detection for road
traffic congestion classification. Concurrency and Computation: Practice and Experience, 34(7), e5983.

[8] Velazquez-Pupo, R., Sierra-Romero, A., Torres-Roman, D., Shkvarko, Y. V., Santiago-Paz, J., Gmez-
Gutiérrez, D., ... & Romero-Delgado, M. (2018). Vehicle detection with occlusion handling, tracking, and
OC-SVM classification: A high performance vision-based system. Sensors, 18(2), 374.

[9] Nixon, M., & Aguado, A. (2019). Feature extraction and image processing for computer vision. Academic
press.

[10] Lentaris, G., Maragos, K., Stratakos, I., Papadopoulos, L., Papanikolaou, O., Soudris, D., ... & Furano, G.
(2018). High-performance embedded computing in space: Evaluation of platforms for vision-based
navigation. Journal of Aerospace Information Systems, 15(4), 178-192.

[11] Bailey, D. G. (2023). Design for embedded image processing on FPGAs. John Wiley & Sons.

[12] Katare, D., & El-Sharkawy, M. (2019, January). Embedded system enabled vehicle collision detection:
an ANN classifier. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC) (pp. 0284-0289). IEEE.

[13] Mhalla, A., Chateau, T., Gazzah, S., & Amara, N. E. B. (2018). An embedded computer-vision system
for multi-object detection in traffic surveillance. IEEE Transactions on Intelligent Transportation Systems,
20(11), 4006-4018.

[14] Arabi, S., Haghighat, A., & Sharma, A. (2020). A deep-learning-based computer vision solution for
construction vehicle detection. Computer-Aided Civil and Infrastructure Engineering, 35(7), 753-767.

[15] Zhang, Y., Guo, Z., Wu, J., Tian, Y., Tang, H., & Guo, X. (2022). Real-time vehicle detection based on
improved yolo v5. Sustainability, 14(19), 12274.

[16] Wei, Y., Tian, Q., Guo, J., Huang, W., & Cao, J. (2019). Multi-vehicle detection algorithm through
combining Harr and HOG features. Mathematics and Computers in Simulation, 155, 130-145.

[17] Wang, H., Yu, Y., Cai, Y., Chen, X,, Chen, L., & Liu, Q. (2019). A comparative study of state-of-the-art
deep learning algorithms for vehicle detection. IEEE Intelligent Transportation Systems Magazine, 11(2),
82-95.

[18] Yang, Z., & Pun-Cheng, L. S. (2018). Vehicle detection in intelligent transportation systems and its
applications under varying environments: A review. Image and Vision Computing, 69, 143-154.

[19] Sotomayor, D., Rosero, M. F., Benitez, D. S., & Ledn, P. (2017, October). A real-time vehicle
identification system implemented on an embedded ARM platform. In 2017 CHILEAN Conference on
Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON) (pp. 1-
7). IEEE.

[20] Wu, H., Hua, Y., Zou, H., & Ke, G. (2022). A lightweight network for vehicle detection based on
embedded system. The Journal of Supercomputing, 78(16), 18209-18224.

[21] Su, H., Dong, Z., Yang, F., & Lin, Y. (2021, January). Remote sensing vehicle detection based on
embedded system. In Twelfth International Conference on Signal Processing Systems (Vol. 11719, pp. 8-
15). SPIE.

[22] Hussain, B., Nawaz, S., & Yousaf, M. H. (2019). Visual vehicle detection scheme on low-powered
embedded GPU. Journal of Intelligent & Fuzzy Systems, 36(2), 1867-1877.

24 Yueming Deng and Dan Deng. Applied Mathematics and Nonlinear Sciences, 9(1) (2024) 1-24

[23] Krismadinata,Firstia Bevi Aulia,Ricky Maulana,Muldi Yuhendri,Maaspaliza Azri & Kannabiran
Kanimozhi. (2023). Development of graphical user interface for boost converter employing visual studio.
IOP Conference Series: Earth and Environmental Science(1).

[24] Wei Jiaxin,Yang Jin & Liu Xinyang. (2024). A text extraction framework of financial report in traditional
format with OpenCV. Journal of Intelligent & Fuzzy Systems(4),8089-8108.

[25] Yue Qiangian,Hu Rui & Zhang Xiaoling. (2021). Analysis and Technology Realization of Power Grid
Harmonic Detection System Based on ARM Embedded System. Journal of Physics: Conference Series(1).

	Abstract
	1 Introduction
	2 Embedded software, hardware-related development platforms
	2.1 Embedded Software Platform
	2.1.1 Visual Studio development environment
	2.1.2 Open CV, a computational vision platform
	2.1.3 Visual Integrated Development Environment IDE
	2.1.4 Compilation platforms and tools
	2.1.5 Programming Language Micro Python
	2.1.6 DFU Program Burning

	2.2 Embedded Hardware Platform
	2.2.1 Machine vision module
	2.2.2 Image sensing unit
	2.2.3 ARM chips
	2.2.4 Data Interaction Module Unit

	3 Offline training and generation of OpenCV-based vehicle classifiers
	3.1 Training of weak vehicle classifiers based on Haar features
	3.1.1 Haar Characterization
	3.1.2 Constructing the training sample dataset
	3.1.3 Sample Image Preprocessing
	3.1.4 Constructing weak classifiers

	3.2 Cascade Classifier Based on Adaboost Algorithm
	3.2.1 Adaboost algorithm
	3.2.2 Candidate boxes
	3.2.3 Adaboost Cascade Classifier

	3.3 Classifier Loading and Testing
	3.3.1 Linux-based firmware secondary development
	3.3.2 Generating Classifier Files Based on OpenCV
	3.3.3 Visual Studio-based platform loading and testing

	4 Example analysis of vehicle inspection
	4.1 Algorithm Validation Analysis
	4.1.1 Evaluation indicators
	4.1.2 Data analysis

	4.2 Algorithm Application Analysis
	4.2.1 Different working conditions
	4.2.2 False Detection Rate and Missed Detection Rate
	4.2.3 Intense light analysis
	4.2.4 Normal light analysis
	4.2.5 Low light analysis
	4.2.6 Night analysis
	4.2.7 Detection time analysis

	5 Conclusion
	References

