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Abstract 

Based on the theory of machine learning in the field of artificial intelligence, this paper proposes to use the computer 

vision platform OpenCV to construct an embedded ARM vehicle detection model. Determine the ARM embedded 

software and hardware and adopt Haar features for the Adaboost algorithm to design the OpenCV vehicle classifier. 

Cross-compile the ARM chip using Linux to generate new firmware for OpenMV. Use the DFU tool for embedded ARM 

chips to upgrade and re-burn them into the embedded development board for machine vision OpenMV. By using the 

classifier file and OpenCV’s image processing algorithm, the work of vehicle detection and recognition is completed, and 

the vehicle target is labeled with a candidate box in the picture and video. The results demonstrate that the algorithm in 

this paper maintains the leakage detection rate and false detection rate below 5% in four different working conditions: 

strong light, normal light, weak light, and nighttime, thereby fully demonstrating the effectiveness of the research 

conducted in this paper. 
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1 Introduction 

Intelligent Transportation System, also known as ITS, was created with the development of economic 

globalization and information technology. It mainly refers to the traffic management system that 

combines computers with image processing technology, vision technology, electronics, 

communication, automation and other technologies that have emerged in recent years [1-2]. It can 

realize a kind of real-time, efficient, accurate larger scope and no blind spot traffic intelligent 

management system. It has an irreplaceable role in effectively improving the efficiency of 

transportation, ensuring the safety of transportation, and promoting the sustainability of development 

[3-4]. In recent years, researchers have made great contributions to the study of intelligent 

transportation in China, and the results are remarkable. The vision-based vehicle detection in vehicle 

identification and tracking technology has played a great role in promoting the intelligence of China’s 

traffic management system [5-6]. Since vision-based vehicle detection and recognition technology 

has irreplaceable superiority over other methods, it is of great value in terms of application value and 

scientific research theory, and the market prospect is very broad [7-8]. 

In the traditional image processing system, PCs occupy a major position, but due to the large size of 

the PC itself, poor portability, and poor stability in the outdoor long-time continuous operation, 

limiting the scope of its application [9]. At present, there are also many image-processing platforms 

based on other systems, most of which use microcontrollers, DSPs, FPGAs, ARMs, etc., as central 

processors. Among these embedded platforms, ARM-based embedded platform systems have been 

gradually used more in image processing systems due to their relatively low development cost, good 

stability, fast computing speed and other characteristics [10-11]. With the continuous development of 

the field of artificial intelligence, the vehicle detection algorithm based on embedded ARM has a 

substantial improvement compared with the traditional method. With the gradual deepening of the 

research of embedded ARM and driverless cars, how to use embedded ARM to quickly and accurately 

realize the vehicle detection algorithm of driverless cars and improve the ubiquity of the detection 

algorithm will be the focus of this paper [12-14]. 

Vehicle detection is one of the research topics of target detection and an important branch of digital 

image processing tasks. Literature [15] improved the YOLO v5 network algorithm using the flip 

tessellation algorithm and applied it to the vehicle detection method in order to improve the accuracy 

of vehicle detection in different traffic scenarios and to reduce the false detection rate of occlusion on 

vehicle targets. Literature [16] proposed a two-step detection algorithm by combining Harr and HOG 

features and applied it to the detection and tracking performance experiments of multi-vehicle targets, 

and the results verified the validity of the method, which can improve the target detection accuracy 

and time efficiency. Literature [17] mainly uses test images closer to actual road conditions to 

compare and evaluate the detection accuracy of five mainstream deep learning target detection 

algorithms, namely RCNN, R-FCN, SSD, RetinaNet and YOLOv3. Literature [18] focuses on 

examining the robustness and efficiency of vehicle detection in intelligent transportation systems and 

discusses the effectiveness of vehicle detection algorithms in different environments through a 

literature review. 

In addition, literature [19] constructed a real-time vehicle recognition system based on a low-cost 

embedded ARM platform and an image processing algorithm for mobile vehicle detection and 

verified the system’s superior performance through testing, which can realize real-time vehicle 

detection, speed measurement and license plate recognition. Literature [20] proposed an embedded 

lightweight vehicle detection algorithm by combining improved YOLOv3-tiny, spatial pyramid 

pooling structure, kmean++ clustering algorithm and Generalized IoU loss function, and experimental 

tests found that the proposed algorithm embodies real-time performance and accuracy in multi-

vehicle target detection. Literature [21] based on the YOLOv5 model proposed a real-time effective 
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and can be deployed on the satellite platform remote sensing image vehicle detection method. The 

test results show that the method can provide technical support for satellite detection in orbit. 

Literature [22] proposed a real-time vehicle detection scheme using a low-power embedded graphics 

processor (GPU), which contains three schemes, namely loose unfolding, tight unfolding and hybrid 

unfolding, and the feasibility of the proposed scheme is verified through experimental comparisons 

on the dataset, which improves the efficiency of vehicle detection. 

This paper combines Haar features and the Adaboost algorithm to build a vehicle detection classifier, 

which is then rewritten in a Linux/Ubuntu environment to generate new firmware for OpenMV. The 

DFU tool for embedded ARM chips is utilized for upgrading and re-burning the embedded 

development board of OpenMV for machine vision. In this paper, the code editing of software test 

cases is completed using the VisualStudio platform and the OpenCV algorithm function library. By 

using the classifier file and OpenCV’s image processing algorithm, the work of vehicle detection and 

recognition is completed, and the vehicle target is labeled with a candidate box in the picture and 

video. Create a dataset and evaluation indexes to evaluate the algorithm presented in this paper both 

experimentally and application-wise. 

2 Embedded software, hardware-related development platforms 

2.1 Embedded Software Platform 

2.1.1 Visual Studio development environment 

Visual Studio is composed of a set of component-based development tools developed by Microsoft, 

which also includes several other technologies for generating powerful, high-performance 

applications [23]. In addition, Visual Studio is optimized for team-based design, development, and 

deployment of enterprise solutions. 

2.1.2 Open CV, a computational vision platform 

OpenCV, the “Open” and “Computer Vision” in its name, represent open source and computer vision, 

respectively, which together constitute this powerful open-source computer vision library [24]. 

OpenCV has become an important tool in the field of computer vision by virtue of its open source, 

unified programming style, optimized code, convenient API interface, fast image processing 

capability, and multi-platform support, which provides strong support for video image processing 

tasks such as motion detection and tracking. 

2.1.3 Visual Integrated Development Environment IDE 

Applying the MVC pattern, the IDE can be divided into several sub-modules, i.e., Glyph Model, 

Glyph Editor, Glyph Portrayer, Property Grid, Glyph Browser, Glyph model, Project Browser, Code 

Editor and IDEUI. 

2.1.4 Compilation platforms and tools 

The command line is used to install the Linux Binscope Security Options Detection Tool, which is 

compatible with all versions of Linux. In the current mainstream Linux distributions, there are SUSE 

Linux 10 32-bit version, SUSE Linux 11 64-bit version, Wind River Linux 32-bit, Wind River Linux 
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64-bit version, etc., while in this paper, Wind River Linux 64-bit version is selected to study the 

embedded ARM-based Vehicle Detection. 

2.1.5 Programming Language Micro Python 

Python is an open-source, free, easy-to-learn, and easy-to-use programming language with a powerful 

standard library and a wide range of application areas, including web development, artificial 

intelligence, data processing, and more. Its simple, straightforward syntax rules and expressions have 

made it one of the programming languages preferred by developers, and it is also widely used in the 

development of well-known applications and services, such as Dropbox, YouTube, Instagram, etc. 

Python is a language that can be developed much faster and can be iterated quickly to meet the needs 

of rapid development. 

2.1.6 DFU Program Burning 

Embedded program burning modes are JTAG, SWD, and DFU. The DFU program encompasses the 

microcontroller DFU Demo code, PC-side upgrade program, PC-side Demo code, and related 

information manuals, and so forth. The use of the DFU program not only makes it possible to quickly 

upgrade the functions of the developed product, but also to update the corresponding upgrade program. 

2.2 Embedded Hardware Platform 

2.2.1 Machine vision module 

The machine vision module uses OpenMV, a new low-power smart camera designed to be the 

“Arduino of machine vision”, to create scalable machine vision modules. The OpenMV module can 

be very well used in machine vision and is based on the STM32H743VI ARM Cortex M7 and 

OV7725 camera as the basis for the machine vision module. For the OpenMV underlying driver and 

image processing library part, some OpenCV libraries are mainly referenced in this system design 

and encapsulated in C language. 

2.2.2 Image sensing unit 

In order to realize the image acquisition unit for sample image acquisition and grading after the 

acquisition, there is a sensing unit installed near the detection position and grading position to realize 

the judgment of sample position and signal presence or absence. On the front of the CCD camera is 

where the detection position sensing unit is mounted among others. A sensing unit for measuring the 

grade is installed in the grading unit. The sensor that is utilized is the E18-F10NK red color sensor. 

In the case of the sample color and the background color, a slight difference in the situation can also 

be detected and the sample color in the device is green or yellow, and the background color is white. 

2.2.3 ARM chips 

The native 64-bit instruction set is already supported by the latest ARM chips. In addition to the 

processor architecture upgrade, the ARM processor process is also becoming more advanced with the 

progress of industrial technology. The latest ARM processor has been used with a 7nm process [25]. 

Now the ARM chip has developed a number of series of many models. Common ARM processor 

performances from low to high are ARM7 series, ARM9 series, ARM9E series, ARM10E series, etc., 

which are widely used in mobile devices, vehicle testing program development, home appliances and 
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factory production and other fields because it has a high performance, low cost and low energy 

consumption and other characteristics, is widely used in cell phones Because of its high performance, 

low cost and low power consumption. It is widely used in a variety of terminals and application 

scenarios, such as mobile phones, laptops, and servers. 

2.2.4 Data Interaction Module Unit 

An SDDataStruct class is designed and created by the data interaction module, which inherits the 

ISDDataStruct class and is primarily used to open the TCP server function. The data interaction 

module is designed for remote communication with the onboard data processing unit and designs and 

creates a SmartDevice class, which inherits the QObject class and mainly realizes the data interaction 

function with the onboard data processing unit. The module is designed to create a SmartDevice class, 

which inherits from the QObject class and mainly enables data interaction with the on-board data 

processing unit. This module is also responsible for processing and forwarding command and data 

messages sent from the ground server to the in-vehicle gateway, and ensuring that they are correctly 

parsed and delivered to the target device. 

3 Offline training and generation of OpenCV-based vehicle classifiers 

3.1 Training of weak vehicle classifiers based on Haar features 

3.1.1 Haar Characterization 

Haar feature involves inputting rectangular features of an image to obtain image features of a specific 

target. The principle of the Haar feature is to change the distribution of pixels by intercepting the gray 

level of a specific region in an image. For example, in grayscaled images, the areas on both sides of 

the eyes and the bridge of the nose of a person are darker than the other areas of the face. In a real-

time road condition monitoring system based on an ARM chip, using the positive samples of the 

training model, for example, vehicle pictures at different angles, there are many differences in the 

shadows of different models. The body and tire size ratio is also different for different models; the 

tangent area of the windshield and the ratio of the entire front end are also different for different 

models at different angles, which are considered different Haar features for different targets. Various 

rectangular features as shown in Figure 1, there are three main common rectangular features, which 

are two-rectangular, three-rectangular features and four-rectangular features. 

Two-rectangle feature

Trirectangular feature

Quadrangular feature

 

Figure 1. Various rectangular features 
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The detection window is shown in Fig. 2 and the number of internal rectangular features is too large 

for a common detector, and the arithmetic of the rectangular features needs to be calculated. The 

calculation method is described below. In a window of size m m  , only the upper left vertex 

( , )l lA x y   and the lower right vertex 2 2( , )B x y   of the rectangle need to be determined, i.e., a 

rectangle can be determined if this rectangle must also satisfy the following two conditions (known 

as the ( ),s t  condition and a rectangle that satisfies the ( ),s t  condition is known as a conditional 

rectangle). 

m

m

1 1( , )A x y

2 2( , )B x y

 

Figure 2. Detection window 

1) The length of the side in direction x  must be divisible by the natural number s  (equally 

divided into s  segments). 

2) The length of the side in direction y  must be divisible by the natural number t  (equally 

into t  segments). The minimum size of the rectangle is s t  or t s , and the maximum 

size is    / /m s s m t t   or    / /m t t m s s   ; where [] is the rounding operator. 

Determine ( , ) : {1,2, , , 1 }}, {1 , 1,2 , ,i i i iA x y x m s m s t ty m m− − + − − +  

After obtaining point A, point B can only be taken in the shade, so there: 

 

2 { | 1, 2 1, , ( 1) 1, 1}

{ 1, 2 1, , ( 1) 1, 1}

1 1
,

x X x s x s x p s x p s

y Y y t y t y q t y q t

m x m y
p q

s t

 = + − +  − + −  − +  −

 = + − +  − + −  − +  −

− + − +
= =

 (1) 

This yields the number of all rectangles in the  m m  sub-window that satisfy the ( , )s t  condition: 
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1 1

1 1

1 1

1 1
1 1

1 1

1 1

1 1

1 1 1 1
1 1

m s m t
m

s t

x y

m s m t
i i

x y

m s m t

x y

p q

m x m y

s t

m x m y

s t

m m s m m t

s s s t t t

+ + − +

= =

− + − +

= =

− + − +

= =

 = 

− + − +   
=    

   

− + − +   
=    

   

 − +   − +            
= + + + +  + + +             

             

 

 

 




 (2) 

(  is the number of features, s  and t  are the types of features) 

The total number of all features in the sub-window where n , is the sum of the number of various 

features. I.e: 

 (1,2) (2,1) (1,3) (3,1) (1, ) ( ,1)

m m m m m m m

n n = + + + + + +  (3) 

Since features 1 and 2, features 3 and 4, etc. have rotational symmetry, this can be simplified to: 

 (1,2) (1,3) (1, )2 2 2 )(n is infinitem m m m

n =  +  +   (4) 

The pixel values of a region can be calculated using the integral of the endpoints of the region, and 

rectangular features can be calculated as rectangular eigenvalues. To wit: 

 
,

( , ) ( , )
x x y y

ii x y i x y
  

 =   (5) 

The integral map of coordinate ( ),A x y   is the sum of all pixels in its upper left corner, where 

( )  ,ii x y  denotes the integral map and ( ),i x y  denotes the original image, which is the color value 

of this point in the case of a color image, and its gray value in the range 0-255 in the case of a grayscale 

image. The characteristic integral is shown in Fig. 3, where ( ),A x y  denotes the integral map of 

point ( ),x y ; and ( ),s x y  denotes the sum of all the original images in the y  direction of point 

( ),x y . The integral map can also be derived using Eq. (6) and Eq. (7): 

 ( , ) ( , 1) ( , )s x y s x y i x y= − +  (6) 

 ( , ) ( 1, ) ( , )ii x y ii x y s x y= − +  (7) 
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x
X

Y

(1,1)

( , )S x y

( , )A x y

 

Figure 3. Feature integral 

3.1.2 Constructing the training sample dataset 

The Haar features and their algorithmic principles have been described in detail in the above sections. 

In this section, we will target the construction of a database of forward vehicles suitable for China’s 

road traffic situation, which mainly contains positive and negative samples. A suitable number of 

sample datasets is not only conducive to improving the recognition rate of the classifier, but also will 

effectively shorten the training time of the classifier. A high-quality training sample dataset requires 

that the included samples satisfy typical usage scenarios, have low data redundancy, and contain 

sample images with appropriate resolution and consistency. In the process of constructing the sample 

dataset, a total of 300 positive samples were collected in this paper. Among them, some of the positive 

samples are typical vehicle datasets that are publicly available on the web and are screened to select 

images that meet the characteristics of having a vehicle in front of them as an alternative to the sample 

dataset. 

3.1.3 Sample Image Preprocessing 

To improve the extraction of Haar features from the sample dataset constructed above, it is also 

necessary to perform image preprocessing on the sample dataset, which mainly involves size 

normalization and grayscaling processing. 

1) Size normalization 

The size normalization processing is to exclude the interference of pixel factors on Haar 

feature extraction and computation, because the positive and negative samples with different 

pixel sizes have different feature values and number of features when they are subjected to 

Haar feature extraction and computation. The recognition effect of the resulting classifier will 

be seriously impacted if samples with different pixels are used during classifier training. 

Therefore, it is necessary to normalize the size of all positive and negative samples in the 

sample dataset and batch process them into images of 24 × 24 pixels for classifier training. 

2) Grayscale processing 

It is to convert color images into grayscale images. The intensity values for color images are 

between 0 and 255, and the same holds true for grayscale images. Black is 0, white is 255, 

and the color gradually fades from black, fading with different gray values, and finally 

transitioning to white. 
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The use of grayscale images instead of color images in the image preprocessing process is to 

reduce the amount of information to be processed and to speed up the detection of subsequent 

vehicle features. Color images have a lot of information, which makes the processing process 

complex and increases the amount of computation. In contrast, grayscale images have 2 bits 

less image depth compared to color images, so the amount of computation required is 

relatively less. In addition, from the point of view of local color, length, width, and other 

distribution characteristics, the two are identical, so the image is grayscale. 

In accordance with the importance and other indicators, a weighted average algorithm is 

adopted for the three RGB components. The weights of each component are distinct, and the 

OpenCV library’s grayscale weights can be utilized. In addition, a weight value can be 

proposed based on human biology (the human eye is most sensitive to green and least sensitive 

to blue). Namely: 

 0.07216 0.71516 0.21267Gray B G R= + +  (8) 

 0.11 0.59 0.3Gray B G R= + +  (9) 

3.1.4 Constructing weak classifiers 

In the previous section, the construction of the stop-negative sample dataset, the sample image 

processing and the extraction of Haar features are completed before and after, and in this section, the 

construction of a weak classifier will be carried out based on the above Haar features and feature 

values. Classifiers that have a correct rate of object classification above 50% are called weak 

classifiers. Although its correct rate is not as high as those of the strong classifiers and cascade 

classifiers discussed in the next section, the weak classifiers are characterized by simple mathematical 

structure, small computation, and high real-time performance. 

Each Haar feature has a corresponding weak classifier; it may be assumed that ( )nf x   is the 

eigenvalue of the n nd Haar feature, and its weak classifier can be expressed by Eq. (10) as: 

 
1, ( )

( )
0,

n n n n

n

p f x p
h x

otherwise


= 


 (10) 

Where the classification result of the weak classifier is ( )nh x , and its value 1 means for the presence 

of vehicle target objects and 0 means the absence of vehicle target objects. np   is the direction 

parameter of the inequality, which takes the value range of {1, -1}, with 1 indicating that the inequality 

has the sign of less than sign, and -1 the opposite. n  is the feature value of the weak classifier ( )nh x , 

i.e., the classification threshold, and this threshold is the key to construct the Haar feature weak 

classifier. An appropriate threshold reduces the sample classification error rate of the weak classifier 

for Haar features over the entire sample set. The most appropriate threshold value should result in 

minimizing its classification error rate. 
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3.2 Cascade Classifier Based on Adaboost Algorithm 

3.2.1 Adaboost algorithm 

Adaboost’s goal is to enhance the accuracy of the classifier judgment through multiple iterations. The 

weak classifier (which is the vehicle weak classifier built on Haar features in the previous section) is 

trained with the same weights as all the training samples at the start. In the Nth iteration, the weights 

of the samples are determined by the results of the N-1 iteration. In other words, the results of the last 

iteration determine the weights of the current samples: at the end of each iteration, the weights of the 

samples are adjusted once, and the weights of the incorrectly categorized samples will be raised. After 

each iteration, the weights of the samples will be adjusted, the weights of the misclassified samples 

will be raised, and the misclassified samples will become visible, leading to a new sampling 

distribution. So on and so forth, under the new sample distribution, the weak classifier is trained again 

to obtain a new weak classifier. A strong classifier can be formed by combining N weak classifiers 

with specific weights after N iterations. 

3.2.2 Candidate boxes 

The specific settings of region candidate frames are shown in Table 1. The region candidate frames 

of each feature map layer of the Adaboost algorithm have different aspect ratios, 

 1,2,3,1/ 2,1/ 3ra  , in order to enhance the robustness of the detection of different shapes of the 

target in the Adaboost algorithm 4 _ 3conv , 7fc , 8 _ 2conv  are treated as the prediction of the 

feature maps, and each feature map generates a certain number of region candidate frames with 

different aspect ratios. If the feature map size is m × m and the number of region candidate frames 

with aspect ratio is k, then this prediction layer produces m × m × k region candidate frames. 

Table 1. Regional candidate box specific Settings 

Feature map 4_3conv  7fc  8_ 2conv  

m×m 45×45 28×28 15×15 

K 4 6 6 

Number 5638 2033 575 

1:1 35×35 55×55 95×95 

3.2.3 Adaboost Cascade Classifier 

The traditional boosting algorithm is to randomly select weak classifier samples to improve their 

value, but this method cannot accurately classify the weak classifiers. Adaboost cascade classifier is 

shown in Fig. 4. The Adaboost algorithm utilizes the error data of previous weak classifiers to train 

the next weak classifiers, which reduces the weights of the accurate classifiers in subsequent training. 

Training; at the same time, it also improves the weight of the unclassified weak classifiers to realize 

adaptive classification; finally, it modifies the weight of each classifier through this decisive 

generation to integrate into a strong classifier. The algorithm’s specific steps are as follows. 

1) Given n  training sample 1 1 2 2( , ), ( , ) ( , )n nx y x y x y , where 1iy =  denotes a positive 

sample and 1iy = −  denotes a negative sample. 



Research on Vehicle Detection Algorithm Based on Embedded ARM 

 

11 

2) Initialize the weights of the positive and negative samples, ,m l  being the number of positive 

and negative samples, respectively: 

 ,

Positive sample

Negative sampl

1
,

2

1
, e

2

I i

m

l






= 



 (11) 

3) The weak classifier built for each extended Haar-like matrix feature  j  is: 

 
1, ( )

( , , , )
0, other

j

pf x p
g x f p





=  (12) 

Where x  is the target feature window, f  is the feature value, p  is used to adjust the direction 

of the inequality sign, and   is the threshold of the feature value. Take all the weak classifiers for 

T  iterations, for 1,2t T= . 

1) Normalize the weights: 

 

,

,

,

1

t i

t i n

t j

j





=

=


 (13) 

2) For each feature weak classifier j , find its weighted error: 

 ,

1

| |
n

j i j j i

i

g y 
=

= −  (14) 

3) Select the classifier ig  with the smallest weighting error i  and update its weights: 

 
1

1, ,

e

t i t j t   −

+ =  (15) 

Where, 
1

i
i

i





=

−
, if the feature window can be classified correctly, 0e = , otherwise 1e =  

4) After T  rounds of iterative training, the final strong classifier is obtained: 

 1 1

1
1, ( )

( ) 2

0,other

T T

t t t

t t

g x
G x

 
= =




= 



 
 (16) 

1
logt

t




=  of them. 
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Haar-like strong 

classifier 1

Haar-like strong 

classifier 1

Haar-like strong 

classifier 1
 

Identified as a 

target

Non-target Non-target Non-target

 

Figure 4. Classification principle of cascade classifier 

3.3 Classifier Loading and Testing 

3.3.1 Linux-based firmware secondary development 

The underlying algorithms of the OpenMV module are written in C/C++ language in modules, and 

the commonly used image processing algorithms and embedded system underlying related software 

frameworks have been encapsulated during the development of the software architecture, and one by 

one submodule are invoked in the application layer using the interpreted language MicroPython. 

The so-called secondary development of firmware is to rewrite or rewrite the required image 

processing functions or recognition algorithm modules in the Linux/Ubuntu environment to generate 

new OpenMV firmware and then use the embedded ARM chip’s DFU tool for upgrading and re-

burning it into the embedded development board of OpenMV for machine vision. 

3.3.2 Generating Classifier Files Based on OpenCV 

In the above section, the training principle of the cascade classifier has been described and analyzed 

in detail, and the classifier file needed for the forward vehicle online detection algorithm is made by 

calling opencv_traincascade in OpenCV. The exe file was generated by performing cascade classifier 

training. The process of creating the classifier file can be broken down into three basic steps: 

Step 1: Import the training sample dataset 

The training sample dataset’s construction has been explained in detail in 3.1.2 above. The classifier 

will be trained by importing the training sample dataset and giving it to opencv_traincascade.exe. 

Step 2: Generate the sample description file 

The sample description file is available through openCV_createsamples. The exe is carried out to 

generate the description file of the positive samples, i.e., the file with the extension .vec, which holds 

the description file of the positive samples for data storage in binary form. Negative samples require 

the generation of a description file with the extension.dat, which is also necessary. 

Step 3: Perform classifier training and .xml file generation 

The opencv_traincascade will be called throughout the training process. Exe executable to train the 

Adaboost cascade classifier based on Haar features. Due to opencv_traincascade. The exe file already 

encapsulates the whole process of Haar feature extraction and Adaboost classifier training. Only the 

positive sample description file (pos. vec) and the negative sample description file (neg. dat) from the 

second step are taken as inputs, and the desired classifier configuration file (cardetection.xml) can be 

obtained by training. This training process is time-consuming on PCs, and it is recommended to use 
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a remote server to invoke a high-performance multi-core processor for classifier training, which can 

effectively shorten the training time and improve the training efficiency. 

3.3.3 Visual Studio-based platform loading and testing 

After completing the training of the classifier, the configuration file (car_detection.xml) of the 

classifier is obtained, in order to better test the performance of the classifier. 

In this paper, we use the Visual Studio platform and the OpenCV algorithm function library to code-

edit the software test cases and load pictures and videos that contain vehicle targets to be tested. By 

calling the classifier file and the image processing algorithm of OpenCV, the work of detecting and 

recognizing the vehicle in front is completed, and the vehicle target is marked with a candidate box 

in the picture and video. 

4 Example analysis of vehicle inspection 

4.1 Algorithm Validation Analysis 

4.1.1 Evaluation indicators 

Both object classification and localization in the target detection task need to be evaluated, and the 

measure of target detection accuracy is mAP, which consists of two components: accuracy and recall. 

The accuracy and recall of each target detected by the network are corresponding. Since each input 

image in target detection corresponds to multiple targets with multiple labeled inputs, and the network 

has to predict the category score and location coordinates of each target, its mAP computation step is 

more cumbersome than that of a classification network. 

This subsection detects cars and other targets, and is a binary classification problem where the 

ultimate goal is to correctly detect all cars without treating other targets as cars. There are four cases 

of detection result: TP means that the target is correctly detected, FP means that the other objects are 

treated as cars, FN means that the cars are detected as other targets, and TN means that the other 

targets are not detected as cars, and the interrelationship of these four cases is shown in Fig. 5. 

Accuracy is measured by the ratio of positive targets to all targets detected. Recall refers to the ratio 

of detected positive targets to all positive targets in the whole dataset, i.e., whether the network can 

find as many cars as possible in the picture. The level of accuracy represents the network’s ability to 

recognize the target category, while the recall represents the size of the network’s ability to recognize 

the target. The accuracy and recall are calculated in the following equation: 

 
TP

precision
TP FP

=
+

 (17) 

 
TP

recall
TP FN

=
+

 (18) 
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Figure 5. Four kinds of relationships 

For a particular class of tests, the category scores output by the network are sorted from high to low. 

The corresponding accuracy and recall are calculated from top-1 to top-n. As the test sample increases, 

the accuracy decreases, and the recall increases. Recall is x -axis and accuracy is y -axis, and the 

accuracy-recall curve is plotted as shown in Fig. 6. A well-performing detector can increase recall 

while ensuring higher accuracy, and a poorly performing detector may need to lose a significant 

amount of accuracy in exchange for the trade-off with recall. 

  

Figure 6. Precision - recall curve 

Let there be N  sample of a class with M  positive examples, then M  recalls can be obtained: 

 1/ ,2 / , , /M M M M . For each recall r , the maximum accuracy is calculated as follows: 

 ( ) ( )( )
'

'max
r r

P r p r


=  (19) 

The average precision ( )AP  for this category is calculated as follows: 
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M 

=   (20) 

Eq. AP  measures how good the algorithm is on each category, and mAP  measures how good the 

algorithm is at detecting performance on all categories, calculated as follows: 

 0

n

ii
AP

mAP
n

==
  (21) 

In the above equation, n  denotes the number of categories and iAP  denotes the average precision 

of the i rd category. 

4.1.2 Data analysis 

For the specific data of vehicles, it is known from the previous analysis that it is necessary to set the 

candidate box matching the data according to its distribution characteristics, in order to improve the 

network detection accuracy and reduce the network complexity of the purpose. In order to set the 

appropriate region candidate box for the vehicle dataset, this paper runs K-Means clustering on the 

training data based on OpenCV’s vehicle detection algorithm, which mainly uses the Adaboost 

algorithm as Haar’s feature extraction classifier, the region candidate box and the aspect ratio are set 

around the center of the clustering, so that the region candidate width and the real box is more 

compatible with the revised width and height distribution of the region candidate box. The training 

data in Figure 7 is represented by the cyan points, and the colored straight lines indicate the different 

aspect ratios of the region candidate frames. The original frame has been modified as follows: 

1) Delete the frames with an aspect ratio of 1/3. 

2) Keep only the prediction layers conv4_3, fc7, and conv8_2, and delete all the convolutional 

layers behind them. 

3) Set 4 region candidate boxes for conv4_3, and 5 region candidate boxes for fc7 and conv8_2 

respectively, and note the changes as OpenCV_change. 

  

Figure 7. Modified area candidate frame wide high score cloth 

The mAP comparisons of the detection effects of the Adaboost algorithm and the OpenCV 

(Haar+Adaboost) algorithm on the dataset are shown in Table 2 (the table contains only some kinds 

of AP data). Figure 8 shows the Precision-Recall curves of several kinds of objects in target detection 
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in figure (a)~(d) are Car, Person, Bus, and Cat, respectively. A purple line indicates the detection 

results of the Adaboost algorithm. Combining Table 1 and Fig. 8, it can be seen that the OpenCV 

(Haar+Adaboost) algorithm has a map that is 4.51% higher than that of the Adaboost algorithm, and 

the convergence speed is also faster than that of the Adaboost algorithm. 

Table 2. mAP contrast results 

Algorithm Map Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog 

Adaboost+Haar 79.39 86.65 77.63 70.25 49.12 88.84 88.64 88.31 91.65 60.43 83.35 88.44 

Adaboost 74.88 74.25 82.33 70.22 61.08 42.44 83.15 81.35 88.45 86.25 72.05 82.15 
 

  

(a)car (b)Person 

  

(c)Bus (d)Cat 

Figure 8. The precision of several objects in the target detection curve 

After completing the testing and comparison of the detection accuracy of the two models on the 

computer using the test data set, it is also necessary to test the running speed of the two models on 

the embedded ARM development board. Image data is read directly into the OpenCV run detection 

on the ARM development board through the USB camera. In the detection thread, first get the system 

time before the image input network, when the image input network detection is complete, and then 

get the current system time, the difference between the two for the model to detect 2000 frames of 

images consumed by milliseconds. In the actual test, the OpenCV (Haar+Adaboost) algorithm detects 

one frame of image in an average time of 111ms, and the overall operation can be obtained at 9.01fps. 

The comparison of the detection speed of Adaboost and OpenCV (Haar+Adaboost) algorithms 

running on ARM development boards is shown in Fig. 9, in which (a)~(b) are respectively Adaboost, 

OpenCV (Haar+Adaboost). Considering the ARM development board is not the best mobile 
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processor on the market today, and it is the test result in a GPU-less environment, it is necessary to 

burn the DFU program to improve the detection speed of the OpenCV (Haar+Adaboost) algorithm. 

  

(a)Adaboost (b)Haar+Adaboost 

Figure 9. Different algorithms run on the arm development board 

4.2 Algorithm Application Analysis 

4.2.1 Different working conditions 

In order to test the real-time and accuracy of the vehicle detection algorithm proposed in this paper, 

this paper carries out a long-distance road test according to four working conditions: strong light, 

normal light, weak light and nighttime, and counts the leakage rate and false detection rate of vehicle 

detection under each working condition, and the time of execution of the statistical algorithm. The 

accuracy of the algorithm is determined by analyzing the leakage detection rate and false detection 

rate, and the real-time performance of the algorithm is determined by the average value of the 

execution time of the statistical algorithm. 

Under daytime conditions, the test vehicle is driven on a multi-lane highway at a variable speed of 

80 to 120 km/h, and the recognition test is conducted on vehicles traveling on the highway. For each 

cross-combination condition, the recognition system is activated and the test data is recorded. 

Under nighttime conditions, the test vehicle is driven on a multi-lane highway at a variable speed of 

80~120 km/h, and the recognition test is conducted on vehicles traveling on a single lane. The 

recognition system is activated and the detection result data is recorded in different lighting situations. 

In order to analyze the environmental adaptability of the vehicle detection algorithm proposed in this 

paper, the vehicle detection results in continuous towel chastity are counted for different working 

conditions. Statistics of vehicle detection in strong, normal, weak, and night scenes for 2000 

consecutive frames of images respectively. It should be noted that because the nighttime lamp can 

only illuminate this lane, so only the detection of vehicles in this lane at night daytime can be detected 

at the same time adjacent to the left and right lanes of the vehicle. 

4.2.2 False Detection Rate and Missed Detection Rate 

To verify the accuracy and reliability of the proposed algorithm, the leakage detection rate and the 

false detection rate are defined: the leakage detection rate is the probability that a vehicle leakage 

detection occurs for the current frame during the whole algorithm execution; the false detection rate 

is the probability that a vehicle false detection occurs for the current frame during the whole algorithm 
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execution. Equation (22) displays the formula for the missed detection rate and equation (23) displays 

the formula for the false detection rate: 

 1 100%
get

real

N

N

 
−  

 
 (22) 

 1 100%
getreal

real

N

N

 
−  

 
 (23) 

Wherein, the number of true targets realN , i.e., the number of targets in the image sample that should 

be recognized as vehicles, the number of algorithm-recognized targets getN  , i.e., the number of 

targets in the image sample that the vehicle detection algorithm determines to be considered as style 

vehicles, and the number of algorithm-recognized true targets getrealN , i.e., the number of correct 

targets in the image sample that the vehicle detection recognition algorithm determines to be style 

targets. 

4.2.3 Intense light analysis 

Under the condition of strong illumination, Figure 10 gives the ranging data of the target vehicles in 

the three lanes in the consecutive 2000 frames of images, Figure (a) ~ (c) for the left lane, the current 

lane, the right lane, where the horizontal coordinate is the consecutively processed image tilt counts, 

and the vertical coordinate is the longitudinal distance of the front vehicle from the current vehicle 

calculated by the recognition software, and if the value is 0, then it indicates that the algorithm 

considers that there is no vehicle target in the current lane. According to the vehicle ranging result 

chart under strong illumination, the number of algorithm recognitions is counted as 1416, and by 

observing the test video, the number of real targets is counted as 1466, which leads to the number of 

missed detection by the algorithm as 50 times. In addition, by observing the video, it is found that 

there are 8 times that the ranging error is too large due to the influence of the bridge shadow, and the 

algorithm recognizes the number of real targets as 1408. The time range of the video has a leakage 

rate of 3.41% and a false detection rate of 0.56%, which can be calculated from this. 

 

(a)Left lane 
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(b)Current lane 

 

(c)Right lane 

Figure 10. Target vehicle ranging data 

4.2.4 Normal light analysis 

Under clear light conditions, Figure 11 gives the ranging data of the target vehicles in three lanes in 

2000 consecutive frames of images, where the horizontal coordinate is the number of consecutively 

processed image frames counted, and the vertical coordinate is the longitudinal distance of the front 

vehicle from the current vehicle calculated by the recognition software, and if the value is 0, it 

indicates that the algorithm considers that there is no vehicle target in the current lane. According to 

the vehicle ranging results under normal lighting map statistics of the algorithm to identify the number 

of 1557, by observing the test video, statistics of the number of real targets for 1622, which leads to 

the number of algorithms missed 65 times; through the observation of the test video can be seen when 

the road surface of other objects with too large a shadow (such as the shadow of the tree or the shadow 

of the bridge), it is easy to produce a misdiagnosis and found that there are five misdiagnosis, that is, 

the bridge shadow containing a The shadow of the bridge containing a vehicle is misdetected as a 

vehicle, i.e., the algorithm recognizes the true number of targets 1552. The leakage rate and 

misdetection rate in the video time range are 4.01% and 0.32%, respectively, according to this 

information. 

 

(a)Left lane 
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(b)Current lane 

 

(c)Right lane 

Figure 11. Target vehicle ranging data under normal light 

4.2.5 Low light analysis 

Under the conditions of weak illumination, Figure 12 gives the ranging data of the target vehicles in 

three lanes in a continuous 2000-frame image, where the horizontal coordinate is the continuous 

processing of the image shouting counts, and the vertical coordinate is the longitudinal distance of 

the front vehicle from the car calculated by the recognition software if the value is 0, it indicates that 

the algorithm believes that there is no vehicle target in the current lane. According to the vehicle 

ranging results in low light map statistics of the algorithm recognition number of 1622, by observing 

the test video, statistics of the real target number of 1698, which leads to the algorithm missing the 

detection of the number of 76 times; In addition, by observing the test video, it was found that the 

apparent ranging errors caused by road bumps were 8 times and the algorithm recognized the number 

of real targets 1614. This information allows us to calculate the leakage and false detection rates of 

4.47% and 0.49% for the video time range. 

 

(a)Left lane 
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(b)Current lane 

 

(c)Right lane 

Figure 12. The target vehicle is ranging from weak light 

4.2.6 Night analysis 

Under nighttime lighting conditions, Figure 13 gives the ranging data of the target vehicle in the 

current lane in 2000 consecutive frames of images, where the horizontal coordinate is the continuous 

processing of the image shouting counts, the vertical coordinate is the longitudinal distance of the 

front vehicle from the vehicle calculated by the recognition software, and if the value is 0, it indicates 

that the algorithm believes that there is no vehicle target in the current lane. According to the nighttime 

vehicle ranging results chart statistics of the algorithm recognition number of 948, the actual test has 

been the existence of the target, the real target number of 991; in the detection process, the resulting 

algorithm misses the number of 43 times; In addition, by observing the test video, it was found that 

road markings caused 7 false detections, and the algorithm recognized the number of real targets 941. 

Based on this information, it can be determined that the miss and false detection rates for the video 

time range are 4.53% and 0.74%, respectively. 

 

Figure 13. Night target vehicle ranging data 
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4.2.7 Detection time analysis 

In terms of algorithm time, the daytime vehicle detection algorithm consumes more time than the 

nighttime vehicle detection algorithm because it has to process images within three lanes. The 

daytime vehicle detection algorithm’s time consumption for 2000 consecutive frames is depicted in 

Fig. 14(a), which has an average processing time of about 157 milliseconds, and the time consumption 

of the nighttime vehicle detection algorithm for 2000 consecutive frames is given in Fig. 14(b), which 

has an average processing time of about 118 milliseconds. 

  

(a)Day time (b)Nigth 

Figure 14. Algorithm time analysis 

5 Conclusion 

Due to poor weather conditions, low illumination, or overexposure to the external environment, the 

captured vehicle images are often excessively gray and have detail loss, which leads to numerous 

vehicle violations. This paper proposes a vehicle detection algorithm that utilizes embedded OpenCV 

to address these problems. The algorithm is validated and analyzed for applications when combined 

with the dataset. 

1) On the dataset, the map of the OpenCV (Haar+Adaboost) algorithm is 4.51% higher than that 

of the Adaboost algorithm, and at the same time, the convergence speed is more excellent than 

that of the Adaboost algorithm. 

2) The algorithm in this paper has excellent performance in strong light, normal light, weak light, 

night time and detection time, which confirms the effectiveness of the vehicle detection 

algorithm based on embedded ARM. 
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